你好,我是韩健。

提到分布式算法,就不得不提 Paxos 算法,在过去几十年里,它基本上是分布式共识的代名词,因为当前最常用的一批共识算法都是基于它改进的。比如,Fast Paxos 算法、Cheap Paxos 算法、Raft 算法、ZAB 协议等等。而很多同学都会在准确和系统理解 Paxos 算法上踩坑,比如,只知道它可以用来达成共识,但不知道它是如何达成共识的。

这其实侧面说明了 Paxos 算法有一定的难度,可分布式算法本身就很复杂,Paxos 算法自然也不会例外,当然了,除了这一点,还跟兰伯特有关。

兰伯特提出的 Paxos 算法包含 2 个部分:

  1. 一个是 Basic Paxos 算法,描述的是多节点之间如何就某个值(提案 Value)达成共识;
  2. 另一个是 Multi-Paxos 思想,描述的是执行多个 Basic Paxos 实例,就一系列值达成共识。

可因为兰伯特提到的 Multi-Paxos 思想,缺少代码实现的必要细节(比如怎么选举领导者),所以在理解上比较难。

为了让你理解 Paxos 算法,接下来我会用 2 节课的时间,分别以 Basic Paxos 和 Multi-Paxos 为核心,带你了解 Basic Paxos 如何达成共识,以及针对 Basic Paxos 的局限性 Multi-Paxos 又是如何改进的。今天咱们先来聊聊 Basic Paxos。

在我看来,Basic Paxos 是 Multi-Paxos 思想的核心,说白了,Multi-Paxos 就是多执行几次 Basic Paxos。所以掌握它之后,你能更好地理解后几讲基于 Multi-Paxos 思想的共识算法(比如 Raft 算法),还能掌握分布式共识算法的最核心内容,当现在的算法不能满足业务需求,进行权衡折中,设计自己的算法。

来看一道思考题。

假设我们要实现一个分布式集群,这个集群是由节点 A、B、C 组成,提供只读 KV 存储服务。你应该知道,创建只读变量的时候,必须要对它进行赋值,而且这个值后续没办法修改。因此一个节点创建只读变量后就不能再修改它了,所以所有节点必须要先对只读变量的值达成共识,然后所有节点再一起创建这个只读变量。

那么,当有多个客户端(比如客户端 1、2)访问这个系统,试图创建同一个只读变量(比如 X),客户端 1 试图创建值为 3 的 X,客户端 2 试图创建值为 7 的 X,这样要如何达成共识,实现各节点上 X 值的一致呢?带着这个问题,我们进入今天的学习。

图 1

在一些经典的算法中,你会看到一些既形象又独有的概念(比如二阶段提交协议中的协调者),Basic Paxos 算法也不例外。为了帮助人们更好地理解 Basic Paxos 算法,兰伯特在讲解时,也使用了一些独有而且比较重要的概念,提案、准备(Prepare)请求、接受(Accept)请求、角色等等,其中最重要的就是“角色”。因为角色是对 Basic Paxos 中最核心的三个功能的抽象,比如,由接受者(Acceptor)对提议的值进行投票,并存储接受的值。

你需要了解的三种角色

在 Basic Paxos 中,有提议者(Proposer)、接受者(Acceptor)、学习者(Learner)三种角色,他们之间的关系如下:

图 2

看着是不是有些复杂,其实并不难理解:

  1. 提议者(Proposer):提议一个值,用于投票表决。为了方便演示,你可以把图 1 中的客户端 1 和 2 看作是提议者。但在绝大多数场景中,集群中收到客户端请求的节点,才是提议者(图 1 这个架构,是为了方便演示算法原理)。这样做的好处是,对业务代码没有入侵性,也就是说,我们不需要在业务代码中实现算法逻辑,就可以像使用数据库一样访问后端的数据。
  2. 接受者(Acceptor):对每个提议的值进行投票,并存储接受的值,比如 A、B、C 三个节点。一般来说,集群中的所有节点都在扮演接受者的角色,参与共识协商,并接受和存储数据。

讲到这儿,你可能会有疑惑:前面不是说接收客户端请求的节点是提议者吗?这里怎么又是接受者呢?这是因为一个节点(或进程)可以身兼多个角色。想象一下,一个 3 节点的集群,1 个节点收到了请求,那么该节点将作为提议者发起二阶段提交,然后这个节点和另外 2 个节点一起作为接受者进行共识协商,就像下图的样子:

图 3

  1. 学习者(Learner):被告知投票的结果,接受达成共识的值,存储保存,不参与投票的过程。一般来说,学习者是数据备份节点,比如“Master-Slave”模型中的 Slave,被动地接受数据,容灾备份。

其实,这三种角色,在本质上代表的是三种功能:

  1. 提议者代表的是接入和协调功能,收到客户端请求后,发起二阶段提交,进行共识协商;
  2. 接受者代表投票协商和存储数据,对提议的值进行投票,并接受达成共识的值,存储保存;
  3. 学习者代表存储数据,不参与共识协商,只接受达成共识的值,存储保存。

因为一个完整的算法过程是由这三种角色对应的功能组成的,所以理解这三种角色,是你理解 Basic Paxos 如何就提议的值达成共识的基础。那么接下来,咱们看看如何使用 Basic Paxos 达成共识,解决开篇提到的那道思考题。

如何达成共识?

想象这样一个场景,现在疫情这么严重,每个村的路都封得差不多了,就你的村委会不作为,迟迟没有什么防疫的措施。你决定给村委会提交个提案,提一些防疫的建议,除了建议之外,为了和其他村民的提案做区分,你的提案还得包含一个提案编号,来起到唯一标识的作用。

与你的做法类似,在 Basic Paxos 中,兰伯特也使用提案代表一个提议。不过在提案中,除了提案编号,还包含了提议值。为了方便演示,我使用 [n, v] 表示一个提案,其中 n 为提案编号,v 为提议值。

我想强调一下,整个共识协商是分 2 个阶段进行的(也就是我在 03 讲提到的二阶段提交)。那么具体要如何协商呢?

我们假设客户端 1 的提案编号为 1,客户端 2 的提案编号为 5,并假设节点 A、B 先收到来自客户端 1 的准备请求,节点 C 先收到来自客户端 2 的准备请求。

准备(Prepare)阶段

先来看第一个阶段,首先客户端 1、2 作为提议者,分别向所有接受者发送包含提案编号的准备请求:

图 4

你要注意,在准备请求中是不需要指定提议的值的,只需要携带提案编号就可以了,这是很多同学容易产生误解的地方。

接着,当节点 A、B 收到提案编号为 1 的准备请求,节点 C 收到提案编号为 5 的准备请求后,将进行这样的处理:

图 5

  1. 由于之前没有通过任何提案,所以节点 A、B 将返回一个“尚无提案”的响应。也就是说节点 A 和 B 在告诉提议者,我之前没有通过任何提案呢,并承诺以后不再响应提案编号小于等于 1 的准备请求,不会通过编号小于 1 的提案。
  2. 节点 C 也是如此,它将返回一个“尚无提案”的响应,并承诺以后不再响应提案编号小于等于 5 的准备请求,不会通过编号小于 5 的提案。

另外,当节点 A、B 收到提案编号为 5 的准备请求,和节点 C 收到提案编号为 1 的准备请求的时候,将进行这样的处理过程:

图 6

  1. 当节点 A、B 收到提案编号为 5 的准备请求的时候,因为提案编号 5 大于它们之前响应的准备请求的提案编号 1,而且两个节点都没有通过任何提案,所以它将返回一个“尚无提案”的响应,并承诺以后不再响应提案编号小于等于 5 的准备请求,不会通过编号小于 5 的提案。
  2. 当节点 C 收到提案编号为 1 的准备请求的时候,由于提案编号 1 小于它之前响应的准备请求的提案编号 5,所以丢弃该准备请求,不做响应。

接受(Accept)阶段

第二个阶段也就是接受阶段,首先客户端 1、2 在收到大多数节点的准备响应之后,会分别发送接受请求:

图 7

  1. 当客户端 1 收到大多数的接受者(节点 A、B)的准备响应后,根据响应中提案编号最大的提案的值,设置接受请求中的值。因为该值在来自节点 A、B 的准备响应中都为空(也就是图 5 中的“尚无提案”),所以就把自己的提议值 3 作为提案的值,发送接受请求 [1, 3]。
  2. 当客户端 2 收到大多数的接受者的准备响应后(节点 A、B 和节点 C),根据响应中提案编号最大的提案的值,来设置接受请求中的值。因为该值在来自节点 A、B、C 的准备响应中都为空(也就是图 5 和图 6 中的“尚无提案”),所以就把自己的提议值 7 作为提案的值,发送接受请求 [5, 7]。

当三个节点收到 2 个客户端的接受请求时,会进行这样的处理:

图 8

  1. 当节点 A、B、C 收到接受请求 [1, 3] 的时候,由于提案的提案编号 1 小于三个节点承诺能通过的提案的最小提案编号 5,所以提案 [1, 3] 将被拒绝。
  2. 当节点 A、B、C 收到接受请求 [5, 7] 的时候,由于提案的提案编号 5 不小于三个节点承诺能通过的提案的最小提案编号 5,所以就通过提案 [5, 7],也就是接受了值 7,三个节点就 X 值为 7 达成了共识。

讲到这儿我想补充一下,如果集群中有学习者,当接受者通过了一个提案时,就通知给所有的学习者。当学习者发现大多数的接受者都通过了某个提案,那么它也通过该提案,接受该提案的值。

通过上面的演示过程,你可以看到,最终各节点就 X 的值达成了共识。那么在这里我还想强调一下,Basic Paxos 的容错能力,源自“大多数”的约定,你可以这么理解:当少于一半的节点出现故障的时候,共识协商仍然在正常工作。

内容小结

本节课我主要带你了解了 Basic Paxos 的原理和一些特点,我希望你明确这样几个重点。

  1. 你可以看到,Basic Paxos 是通过二阶段提交的方式来达成共识的。二阶段提交是达成共识的常用方式,如果你需要设计新的共识算法的时候,也可以考虑这个方式。
  2. 除了共识,Basic Paxos 还实现了容错,在少于一半的节点出现故障时,集群也能工作。它不像分布式事务算法那样,必须要所有节点都同意后才提交操作,因为“所有节点都同意”这个原则,在出现节点故障的时候会导致整个集群不可用。也就是说,“大多数节点都同意”的原则,赋予了 Basic Paxos 容错的能力,让它能够容忍少于一半的节点的故障。
  3. 本质上而言,提案编号的大小代表着优先级,你可以这么理解,根据提案编号的大小,接受者保证三个承诺,具体来说:如果准备请求的提案编号,小于等于接受者已经响应的准备请求的提案编号,那么接受者将承诺不响应这个准备请求;如果接受请求中的提案的提案编号,小于接受者已经响应的准备请求的提案编号,那么接受者将承诺不通过这个提案;如果接受者之前有通过提案,那么接受者将承诺,会在准备请求的响应中,包含已经通过的最大编号的提案信息

课堂思考

在示例中,如果节点 A、B 已经通过了提案 [5, 7],节点 C 未通过任何提案,那么当客户端 3 提案编号为 9 时,通过 Basic Paxos 执行“SET X = 6”,最终三个节点上 X 值是多少呢?为什么呢?欢迎在留言区分享你的看法,与我一同讨论。

最后,感谢你的阅读,如果这篇文章让你有所收获,也欢迎你将它分享给更多的朋友。