22丨MySQL:数据库级监控及常用计数器解析(上)

数据库是一个非常大的话题,我们在很多地方,都会看到对数据库的性能分析会包括以下部分。

但其实呢,以上这些内容都是我们应该具备的基础知识,所以我今天要讲的就是,具备了这些基础知识之后我们应该干什么事情。

也就是说,从性能瓶颈判断分析的角度入手,才是性能从业人员该有的逻辑。每次我分析一个性能问题时,逻辑总是这样的:

先画出整个系统的架构图。

列出整个系统中用到了哪些组件。这一步要确定用哪些监控工具来收集数据,具体的内容你可以看下之前讲到的监控设计相关的内容。

掌握每个组件的架构图。在这一步中需要列出它们的关键性能配置参数。

在压力场景执行的过程中收集状态计数器。

通过分析思路画出性能瓶颈的分析决策树。

找到问题的根本原因。

提出解决方案并评估每个方案的优缺点和成本。

这是我一直强调的分析决策树的创建逻辑。有了这些步骤之后,即使不熟悉一个系统,你也可以进行性能分析。

对于 MySQL 数据库来说,我们想对它进行分析,同样也需要看它的架构图。如下图所示(这是 MySQL5 版本的架构示意图):

这里就有一个问题了:看架构图是看什么?这个图够细吗?

首先,看架构图,一开始肯定是看大而全的架构。比如说上图,我们知道了,MySQL 中有 Connection Pool、SQL Interface、Parser 等这些大的模块。

其次,我们得知道这些模块的功能及运行逻辑。比如说,我们看到了这些模块之后,需要知道,当一个 SQL 通过 Connection Pool 进到系统之后,需要先进入 SQL Interface 模块判断这个语句,知道它是一个什么样的 SQL,涉及到了什么内容;然后通过 Parser 模块进行语法语义检查,并生成相应的执行计划;接着到 Optimizer 模块进行优化,判断走什么索引,执行顺序之类的;然后就到 Caches 中找数据,如果在 Caches 中找不到数据的话,就得通过文件系统到磁盘中找。

这就是一个大体的逻辑。但是知道了这个逻辑还不够。还记得前面我们说的对一个组件进行“全局—定向”的监控思路吧。

这里我们也得找工具实现对 MySQL 的监控,还好 MySQL 的监控工具非常多。

在讲 MySQL 的监控工具之前,我们先来了解下 MySQL 中的两个 Schema,分别是 information_schema 和 performance_schema 。

为什么呢?

information_schema 保存了数据库中的所有表、列、索引、权限、配置参数、状态参数等信息。像我们常执行的 show processlist; 就来自于这个 schema 中的 processlist 表。

performance_schema 提供了数据库运行时的资源消耗情况,它以较低的代价收集信息,可以提供不少性能数据。

所以这两个 Schema 对我们来说就非常重要了。

你没事的时候,也可以查一下它们相关的各个表,一个个看着玩。监控工具中的很多数据来自于它们。

还有两个命令是你在分析 MySQL 时一定要学会的: SHOW GLOBAL VARIABLES; 和 SHOW GLOBAL status; 。前一个用来查看配置的参数值,后一个用来查询状态值。当你没有其他工具可用的时候,就可以用这两个命令的输出结果来分析。对于全局监控来说,这两个命令绝对够用。

对于 MySQL 的监控工具有很多,但我主要讲的是以下几个工具:

mysqlreport、pt-query-digest、mysql_exportor+Prometheus+Grafana。

今天我们先来说一下 mysqlreport。

全局分析:mysqlreport

这个工具执行之后会生成一个文本文件,在这个文本文件中包括了如下这些内容。

我觉得这个工具是属于既不浪费资源,又能全局监控 MySQL 的很好的工具。

在我们执行性能场景时,如果想让 mysqlreport 抓取到的数据更为准确,可以先重启一下数据库。如果你觉得重启数据库这个动作实在是有点大,可以先把状态计数器、打开表、查询缓存等数据给刷新一下。

我认为 mysqlreport 有一些重要的知识点需要你知道,在这里我找一个例子给你解释一下。

索引报表

\_ Key \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Buffer used 5.00k of 8.00M %Used: 0.06 Current 1.46M %Usage: 18.24

请注意,这里所指的 Key Buffer 是指 MyISAM 引擎使用的 Shared Key Buffer ,InnoDB 所使用的 Key Buffer 不在这里统计。

从上面的数据来看,MySQL 每次分配的 Key Buffer 最大是 5K,占 8M 的 0.06%,还是很小的。下一行中的数据可以看到的是当前只用了 1.46M,占 8M 的 18.24%。

显然这个 Key Buffer 是够用的,如果这个使用率高,你就得增加 key_buffer_size 的值了。

操作报表

\_\_ Questions \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Total 126.82M 32.5/s +Unknown 72.29M 18.5/s %Total: 57.00 Com\_ 27.63M 7.1/s 21.79 DMS 26.81M 6.9/s 21.14 COM\_QUIT 45.30k 0.0/s 0.04 QC Hits 38.18k 0.0/s 0.03Slow 2 s 6.21M 1.6/s 4.90 %DMS: 23.17 Log:DMS 26.81M 6.9/s 21.14 SELECT 20.73M 5.3/s 16.34 77.30 INSERT 3.68M 0.9/s 2.90 13.71 UPDATE 1.43M 0.4/s 1.13 5.33 DELETE 983.11k 0.3/s 0.78 3.67 REPLACE 0 0/s 0.00 0.00Com\_ 27.63M 7.1/s 21.79 admin\_comma 11.86M 3.0/s 9.35 set\_option 10.40M 2.7/s 8.20 commit 5.15M 1.3/s 4.06

从这个数据可以看到的信息量就有点大了,它可以反应出来这个数据库现在忙不忙。

从 32.5 每秒的操作量上来说,还是有点忙的。你还可以看到下面有操作数的细分,其实我不太愿意看下面的这些细分,描述上除了 QC Hits 和 DMS 的意思比较清晰之外,其他的几个值理解起来比较费劲。我也不建议你看下面那几个,因为它们对性能分析来说没起到什么正向的作用。

而 Slow 那这一行就很重要了,从这行可以看出 slow log 的时间是设置为 2 秒的,并且每秒还出现 1.6 个的慢日志,可见这个系统的 SQL 的慢日志实在是有点多。

DMS 部分可以告诉我们这个数据库中各种 SQL 所占的比例。其实它是具有指向性的,像我们的这个例子中,显然是 SELECT 多,那如果要做 SQL 优化的话,肯定优先考虑 SELECT 的语句,才会起到立竿见影的效果。

查询和排序报表

\_\_ SELECT and Sort \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Scan 7.88M 2.0/s %SELECT: 38.04Range 237.84k 0.1/s 1.15Full join 5.97M 1.5/s 28.81Range check 913.25k 0.2/s 4.41Full rng join 18.47k 0.0/s 0.09Sort scan 737.86k 0.2/sSort range 56.13k 0.0/sSort mrg pass 282.65k 0.1/s

这个报表具有着绝对的问题指向性。这里的 Scan (全表扫描)和 Full join (联合全表扫描)在场景执行过程中实在是太多了,这显然是 SQL 写得有问题。

Range 范围查询很正常,本来就应该多。

查询缓存报表

\_\_ Query Cache \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Memory usage 646.11k of 1.00M %Used: 63.10Block Fragmnt 14.95%Hits 38.18k 0.0/sInserts 1.53k 0.0/sInsrt:Prune 2.25:1 0.0/sHit:Insert 24.94:1

在这部分中,我们看的关键点是, Query Cache 没用!因为各种 query 都没有缓存下来。同时这里我们还要看一个关键值,那就是 Block Fragment ,它是表明 Query Cache 碎片的,值越高,则说明问题越大。

如果你看到下面这样的数据,就明显没有任何问题。

\_\_ Query Cache \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Memory usage 38.05M of 256.00M %Used: 14.86Block Fragmnt 4.29%Hits 12.74k 33.3/sInserts 58.21k 152.4/sInsrt:Prune 58.21k:1 152.4/sHit:Insert 0.22:1

这个数据明显看到缓存了挺多的数据。Hits 这一行指的是每秒有多少个 SELECT 语句从 Query Cache 中取到了数据,这个值是越大越好。

而通过 Insrt:Prune 的比值数据,我们可以看到 Insert 远远大于 Prune(每秒删除的 Query Cache 碎片),这个比值越大就说明 Query Cache 越稳定。如果这个值接近 1:1 那才有问题,这个时候就要加大 Query Cache 或修改你的 SQL 了。

而通过下面的 Hit:Insert 的值,我们可以看出命中要少于插入数,说明插入的比查询的还要多,这时就要去看这个性能场景中是不是全是插入了。如果我们查看了,发现 SELECT 语句还是很多的,而这个比值又是 Hit 少,那么我们的场景中使用的数据应该并不是插入的数据。其实在性能场景的执行过程中经常这样。所以在性能分析的过程中,我们只要知道这个值就可以了,并不能说明 Query Cache 就是无效的了。

表信息报表

\_\_ Table Locks \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Waited 0 0/s %Total: 0.00Immediate 996 0.0/s\_\_ Tables \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Open 2000 of 2000 %Cache: 100.00Opened 15.99M 4.1/s

这个很明显了,表锁倒是不存在。但是你看现在 table_open_cache 已经达到上限了,设置为 2000,而现在已经达到了 2000,同时每秒打开表 4.1 个。

这些数据说明了什么呢?首先打开的表肯定是挺多的了,因为达到上限了嘛。这时候你会自然而然地想到去调 table_open_cache 参数。但是我建议你调之前先分析下其他的部分,如果在这个性能场景中,MySQL 的整体负载就会比较高,同时也并没有报错,那么我不建议你调这个值。如果负载不高,那再去调它。

连接报表和临时表

\_\_ Connections \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Max used 521 of 2000 %Max: 26.05Total 45.30k 0.0/s\_\_ Created Temp \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Disk table 399.77k 0.1/sTable 5.81M 1.5/s Size: 16.0MFile 2.13k 0.0/s

这个数据连接还完全够用,但是从临时表创建在磁盘(Disk table)和临时文件(File) 上的量级来说,还是有点偏大了,所以,可以增大 tmp_table_size 。

线程报表

\_\_ Threads \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Running 45 of 79Cached 9 of 28 %Hit: 72.35Created 12.53k 0.0/sSlow 0 0/s\_\_ Aborted \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Clients 0 0/sConnects 7 0.0/s\_\_ Bytes \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Sent 143.98G 36.9k/sReceived 21.03G 5.4k/

当 Running 的线程数超过配置值时,就需要增加 thread_cache_size 。但是从这里来看,并没有超过,当前配置了 79,只用到了 45。而这里 Cached 的命中 %Hit 是越大越好,我们通常都希望在 99% 以上。

InnoDB 缓存池报表

\_\_ InnoDB Buffer Pool \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Usage 1.87G of 4.00G %Used: 46.76Read hit 100.00%Pages Free 139.55k %Total: 53.24 Data 122.16k 46.60 %Drty: 0.00 Misc 403 0.15 Latched 0.00Reads 179.59G 46.0k/s From file 21.11k 0.0/s 0.00 Ahead Rnd 0 0/s Ahead Sql 0/sWrites 54.00M 13.8/sFlushes 3.16M 0.8/sWait Free 0 0/s

这个部分对 MySQL 来说是很重要的, innodb_buffer_pool_size 为 4G,它会存储表数据、索引数据等。通常在网上或书籍里,你能看到有人建议将这个值设置为物理内存的 50%,当然这个值没有绝对的,还要在具体的应用场景中测试才能知道。

这里的 Read hit 达到 100%,这很好。

下面还有些其他的读写数据,这部分的数据将和我们在操作系统上看到的 I/O 有很大关系。有些时候,由于写入的过多,导致操作系统的 I/O wait 很高的时候,我们不得不设置 innodb_flush_log_at_trx_commit 参数(0:延迟写,实时刷;1:实时写,实时刷;2:实时写,延迟刷)和 sync_binlog 参数(0:写入系统缓存,而不刷到磁盘;1:同步写入磁盘;N:写 N 次系统缓存后执行一次刷新操作)来降低写入磁盘的频率,但是这样做的风险就是当系统崩溃时会有数据的丢失。

这其实是我们做测试时,存储性能不高的时候常用的一种手段,为了让 TPS 更高一些。但是,你一定要知道生产环境中的存储是什么样的能力,以确定在生产环境中应该如何配置这个参数。

InnoDB 锁报表

\_\_ InnoDB Lock \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Waits 227829 0.1/sCurrent 1Time acquiring Total 171855224 ms Average 754 ms Max 6143 ms

这个信息就有意思了。显然在这个例子中,锁的次数太多了,并且锁的时间都还不短,平均时间都能达到 754ms,这显然是不能接受的。

那就会有人问了,锁次数和锁的平均时间多少才是正常呢?在我的经验中,锁平均时间最好接近零。锁次数可以有,这个值是累加的,所以数据库启动时间长,用得多,锁次数就会增加。

InnoDB 其他信息

\_\_ InnoDB Data, Pages, Rows \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_Data Reads 35.74k 0.0/s Writes 6.35M 1.6/s fsync 4.05M 1.0/s Pending Reads 0 Writes 0 fsync 0Pages Created 87.55k 0.0/s Read 34.61k 0.0/s Written 3.19M 0.8/sRows Deleted 707.46k 0.2/s Inserted 257.12M 65.9/s Read 137.86G 35.3k/s Updated 1.13M 0.3/

这里的数据可以明确告诉你的一点是,在这个性能场景中,插入占有着绝对的量级。

总结

好了,我们拿一个 mysqlreport 报表从上到下看了一遍之后,你是不是觉得对 MySQL 有点感觉了?这里我给一个结论性的描述吧:

在这个性能场景中,慢日志太多了,需要定向监控看慢 SQL,找到慢 SQL 的执行计划。

在这个插入多的场景中,锁等待太多,并且等待的时候又太长,解决慢 SQL 之后,这里可能会解决,但还是要分析具体的原因的,所以这里也是指向了 SQL。

这里为什么要描述得这么细致呢?主要是因为当你看其他一些工具的监控数据时,分析思路是可以共用的。

但是有人说这里还有一个问题:SQL 怎么看?

其实对于我们分析的逻辑来说,在数据库中看 SQL 就是在做定向的分析了。请你不要相信一些人所吹嘘的那样,一开始就把所有的 SQL 执行时间统计出来,这真的是完全没有必要的做法。因为成本太高了。

在下一篇文章里,我们换个工具来看看 SQL 的执行时间到底应该怎么分析。

思考题

最后给你留两道思考题吧,MySQL 中全局监控工具可以给我们提供哪些信息?以及,如何判断 MySQL 状态值和配置值之间的关系呢?

欢迎你在评论区写下你的思考,也欢迎把这篇文章分享给你的朋友或者同事。