25丨KNN(下):如何对手写数字进行识别?

今天我来带你进行 KNN 的实战。上节课,我讲了 KNN 实际上是计算待分类物体与其他物体之间的距离,然后通过统计最近的 K 个邻居的分类情况,来决定这个物体的分类情况。

这节课,我们先看下如何在 sklearn 中使用 KNN 算法,然后通过 sklearn 中自带的手写数字数据集来进行实战。

之前我还讲过 SVM、朴素贝叶斯和决策树分类,我们还可以用这个数据集来做下训练,对比下这四个分类器的训练结果。

如何在 sklearn 中使用 KNN

在 Python 的 sklearn 工具包中有 KNN 算法。KNN 既可以做分类器,也可以做回归。如果是做分类,你需要引用:

1
2

from sklearn.neighbors import KNeighborsClassifier

如果是做回归,你需要引用:

1
2

from sklearn.neighbors import KNeighborsRegressor

从名字上你也能看出来 Classifier 对应的是分类,Regressor 对应的是回归。一般来说如果一个算法有 Classifier 类,都能找到相应的 Regressor 类。比如在决策树分类中,你可以使用 DecisionTreeClassifier,也可以使用决策树来做回归 DecisionTreeRegressor。

好了,我们看下如何在 sklearn 中创建 KNN 分类器。

这里,我们使用构造函数 KNeighborsClassifier(n_neighbors=5, weights=‘uniform’, algorithm=‘auto’, leaf_size=30),这里有几个比较主要的参数,我分别来讲解下:

1.n_neighbors:即 KNN 中的 K 值,代表的是邻居的数量。K 值如果比较小,会造成过拟合。如果 K 值比较大,无法将未知物体分类出来。一般我们使用默认值 5。

2.weights:是用来确定邻居的权重,有三种方式:

weights=uniform,代表所有邻居的权重相同;

weights=distance,代表权重是距离的倒数,即与距离成反比;

自定义函数,你可以自定义不同距离所对应的权重。大部分情况下不需要自己定义函数。

3.algorithm:用来规定计算邻居的方法,它有四种方式:

algorithm=auto,根据数据的情况自动选择适合的算法,默认情况选择 auto;

algorithm=kd_tree,也叫作 KD 树,是多维空间的数据结构,方便对关键数据进行检索,不过 KD 树适用于维度少的情况,一般维数不超过 20,如果维数大于 20 之后,效率反而会下降;

algorithm=ball_tree,也叫作球树,它和 KD 树一样都是多维空间的数据结果,不同于 KD 树,球树更适用于维度大的情况;

algorithm=brute,也叫作暴力搜索,它和 KD 树不同的地方是在于采用的是线性扫描,而不是通过构造树结构进行快速检索。当训练集大的时候,效率很低。

4.leaf_size:代表构造 KD 树或球树时的叶子数,默认是 30,调整 leaf_size 会影响到树的构造和搜索速度。

创建完 KNN 分类器之后,我们就可以输入训练集对它进行训练,这里我们使用 fit() 函数,传入训练集中的样本特征矩阵和分类标识,会自动得到训练好的 KNN 分类器。然后可以使用 predict() 函数来对结果进行预测,这里传入测试集的特征矩阵,可以得到测试集的预测分类结果。

如何用 KNN 对手写数字进行识别分类

手写数字数据集是个非常有名的用于图像识别的数据集。数字识别的过程就是将这些图片与分类结果 0-9 一一对应起来。完整的手写数字数据集 MNIST 里面包括了 60000 个训练样本,以及 10000 个测试样本。如果你学习深度学习的话,MNIST 基本上是你接触的第一个数据集。

今天我们用 sklearn 自带的手写数字数据集做 KNN 分类,你可以把这个数据集理解成一个简版的 MNIST 数据集,它只包括了 1797 幅数字图像,每幅图像大小是 8*8 像素。

好了,我们先来规划下整个 KNN 分类的流程:

整个训练过程基本上都会包括三个阶段:

数据加载:我们可以直接从 sklearn 中加载自带的手写数字数据集;

准备阶段:在这个阶段中,我们需要对数据集有个初步的了解,比如样本的个数、图像长什么样、识别结果是怎样的。你可以通过可视化的方式来查看图像的呈现。通过数据规范化可以让数据都在同一个数量级的维度。另外,因为训练集是图像,每幅图像是个 8*8 的矩阵,我们不需要对它进行特征选择,将全部的图像数据作为特征值矩阵即可;

分类阶段:通过训练可以得到分类器,然后用测试集进行准确率的计算。

好了,按照上面的步骤,我们一起来实现下这个项目。

首先是加载数据和对数据的探索:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

# 加载数据
digits = load_digits()
data = digits.data
# 数据探索
print(data.shape)
# 查看第一幅图像
print(digits.images[0])
# 第一幅图像代表的数字含义
print(digits.target[0])
# 将第一幅图像显示出来
plt.gray()
plt.imshow(digits.images[0])
plt.show()

运行结果:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

(1797, 64)
[[ 0.  0.  5. 13.  9.  1.  0.  0.]
 [ 0.  0. 13. 15. 10. 15.  5.  0.]
 [ 0.  3. 15.  2.  0. 11.  8.  0.]
 [ 0.  4. 12.  0.  0.  8.  8.  0.]
 [ 0.  5.  8.  0.  0.  9.  8.  0.]
 [ 0.  4. 11.  0.  1. 12.  7.  0.]
 [ 0.  2. 14.  5. 10. 12.  0.  0.]
 [ 0.  0.  6. 13. 10.  0.  0.  0.]]
0

我们对原始数据集中的第一幅进行数据可视化,可以看到图像是个 8*8 的像素矩阵,上面这幅图像是一个“0”,从训练集的分类标注中我们也可以看到分类标注为“0”。

sklearn 自带的手写数字数据集一共包括了 1797 个样本,每幅图像都是 8*8 像素的矩阵。因为并没有专门的测试集,所以我们需要对数据集做划分,划分成训练集和测试集。因为 KNN 算法和距离定义相关,我们需要对数据进行规范化处理,采用 Z-Score 规范化,代码如下:

1
2
3
4
5
6
7

# 分割数据,将 25% 的数据作为测试集,其余作为训练集(你也可以指定其他比例的数据作为训练集)
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.25, random_state=33)
# 采用 Z-Score 规范化
ss = preprocessing.StandardScaler()
train_ss_x = ss.fit_transform(train_x)
test_ss_x = ss.transform(test_x)

然后我们构造一个 KNN 分类器 knn,把训练集的数据传入构造好的 knn,并通过测试集进行结果预测,与测试集的结果进行对比,得到 KNN 分类器准确率,代码如下:

1
2
3
4
5
6

# 创建 KNN 分类器
knn = KNeighborsClassifier() 
knn.fit(train_ss_x, train_y) 
predict_y = knn.predict(test_ss_x) 
print("KNN 准确率: %.4lf" % accuracy_score(predict_y, test_y))

运行结果:

1
2

KNN 准确率: 0.9756

好了,这样我们就构造好了一个 KNN 分类器。之前我们还讲过 SVM、朴素贝叶斯和决策树分类。我们用手写数字数据集一起来训练下这些分类器,然后对比下哪个分类器的效果更好。代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

# 创建 SVM 分类器
svm = SVC()
svm.fit(train_ss_x, train_y)
predict_y=svm.predict(test_ss_x)
print('SVM 准确率: %0.4lf' % accuracy_score(predict_y, test_y))
# 采用 Min-Max 规范化
mm = preprocessing.MinMaxScaler()
train_mm_x = mm.fit_transform(train_x)
test_mm_x = mm.transform(test_x)
# 创建 Naive Bayes 分类器
mnb = MultinomialNB()
mnb.fit(train_mm_x, train_y) 
predict_y = mnb.predict(test_mm_x) 
print(" 多项式朴素贝叶斯准确率: %.4lf" % accuracy_score(predict_y, test_y))
# 创建 CART 决策树分类器
dtc = DecisionTreeClassifier()
dtc.fit(train_mm_x, train_y) 
predict_y = dtc.predict(test_mm_x) 
print("CART 决策树准确率: %.4lf" % accuracy_score(predict_y, test_y))

运行结果如下:

1
2
3
4

SVM 准确率: 0.9867
多项式朴素贝叶斯准确率: 0.8844
CART 决策树准确率: 0.8556

这里需要注意的是,我们在做多项式朴素贝叶斯分类的时候,传入的数据不能有负数。因为 Z-Score 会将数值规范化为一个标准的正态分布,即均值为 0,方差为 1,数值会包含负数。因此我们需要采用 Min-Max 规范化,将数据规范化到 [0,1] 范围内。

好了,我们整理下这 4 个分类器的结果。

你能看出来 KNN 的准确率还是不错的,和 SVM 不相上下。

你可以自己跑一遍整个代码,在运行前还需要 import 相关的工具包(下面的这些工具包你都会用到,所以都需要引用):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

代码中,我使用了 train_test_split 做数据集的拆分,使用 matplotlib.pyplot 工具包显示图像,使用 accuracy_score 进行分类器准确率的计算,使用 preprocessing 中的 StandardScaler 和 MinMaxScaler 做数据的规范化。

完整的代码你可以从GitHub上下载。

总结

今天我带你一起做了手写数字分类识别的实战,分别用 KNN、SVM、朴素贝叶斯和决策树做分类器,并统计了四个分类器的准确率。在这个过程中你应该对数据探索、数据可视化、数据规范化、模型训练和结果评估的使用过程有了一定的体会。在数据量不大的情况下,使用 sklearn 还是方便的。

如果数据量很大,比如 MNIST 数据集中的 6 万个训练数据和 1 万个测试数据,那么采用深度学习 +GPU 运算的方式会更适合。因为深度学习的特点就是需要大量并行的重复计算,GPU 最擅长的就是做大量的并行计算。

最后留两道思考题吧,请你说说项目中 KNN 分类器的常用构造参数,功能函数都有哪些,以及你对 KNN 使用的理解?如果把 KNN 中的 K 值设置为 200,数据集还是 sklearn 中的手写数字数据集,再跑一遍程序,看看分类器的准确率是多少?

欢迎在评论区与我分享你的答案,也欢迎点击“请朋友读”,把这篇文章分享给你的朋友或者同事。