01_数学基础__九层之台,起于累土:线性代数
文章目录
“人工智能基础课”将从数学基础开始。必备的数学知识是理解人工智能不可或缺的要素,今天的种种人工智能技术归根到底都建立在数学模型之上,而这些数学模型又都离不开线性代数(linear algebra)的理论框架。
事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。
线性代数中最基本的概念是集合(set)。在数学上,集合的定义是由某些特定对象汇总而成的集体。集合中的元素通常会具有某些共性,因而可以用这些共性来表示。对于集合 { 苹果,橘子,梨 } 来说,所有元素的共性是它们都是水果;对于集合 {牛,马,羊} 来说,所有元素的共性是它们都是动物。当然 { 苹果,牛 } 也可以构成一个集合,但这两个元素并没有明显的共性,这样的集合在解决实际问题中的作用也就相当有限。
“苹果”或是“牛”这样的具体概念显然超出了数学的处理范围,因而集合的元素需要进行进一步的抽象——用数字或符号来表示。如此一来,集合的元素既可以是单个的数字或符号,也可以是多个数字或符号以某种方式排列形成的组合。
在线性代数中,由单独的数 a 构成的元素被称为标量(scalar):一个标量 a 可以是整数、实数或复数。如果多个标量 a1,a2,⋯,ana1,a2,⋯,an
文章作者
上次更新 10100-01-10