11_树的深度优先搜索(上):如何才能高效率地查字典?
文章目录
你好,我是黄申。
你还记得迭代法中的的二分查找吗?在那一讲中,我们讨论了一个查字典的例子。如果要使用二分查找,我们首先要把整个字典排个序,然后每次都通过二分的方法来缩小搜索范围。
不过在平时的生活中,咱们查字典并不是这么做的。我们都是从单词的最左边的字母开始,逐个去查找。比如查找“boy”这个单词,我们一般是这么查的。首先,在 a~z 这 26 个英文字母里找到单词的第一个字母 b,然后在 b 开头的单词里找到字母 o,最终在 bo 开头的单词里找到字母 y。
你可以看我画的这种树状图,其实就是从树顶层的根结点一直遍历到最下层的叶子结点,最终逐步构成单词前缀的过程。对应的数据结构就是前缀树(prefix tree),或者叫字典树(trie)。我个人更喜欢前缀树这个名称,因为看到这个名词,这个数据结构的特征就一目了然。
那前缀树究竟该如何构建呢?有了前缀树,我们又该如何查询呢?今天,我会从图论的基本概念出发,来给你讲一下什么样的结构是树,以及如何通过树的深度优先搜索,来实现前缀树的构建和查询。
图论的一些基本概念
前缀树是一种有向树。那什么是有向树?顾名思义,有向树就是一种树,特殊的就是,它的边是有方向的。而树是没有简单回路的连通图。
如果一个图里所有的边都是有向边,那么这个图就是有向图。如果一个图里所有的边都是无向边,那么这个图就是无向图。既含有向边,又含无向边的图,称为混合图。
在有向图中,以结点 vv
文章作者
上次更新 10100-01-10