28_熵、信息增益和卡方:如何寻找关键特征?
文章目录
你好,我是黄申。今天我们来说说特征选择。
我们已经讨论过信息熵和信息增益在决策树算法中的重要作用。其实,它们还可以运用在机器学习的其他领域,比如特征选择。你可能对“特征选择”这个名词不太熟悉,没有关系,我先花点时间,给你介绍一下什么是特征选择,以及机器学习为什么需要这个步骤。
什么是特征选择?
在编程领域中,机器学习已经有了十分广泛的应用,它主要包括监督式学习(Supervised Learning)和非监督式的学习(Unsupervised Learning)。监督式学习,是指通过训练资料学习并建立一个模型,并依此模型推测新的实例,主要包括分类(Classification)和回归(Regression)。
无论是在监督学习还是非监督学习中,我们都可以使用特征选择。不过,我今天要聊的特征选择,会聚焦在监督式学习中的特征处理方法。因此,为了说清楚特征选择是什么,以及为什么要进行这个步骤,我们先来看看监督式机器学习的主要步骤。
机器学习的步骤主要包括数据的准备、特征工程、模型拟合、离线和在线测试。测试过程也许会产生新的数据,用于进一步提升模型。在这些处理中,特征工程是非常重要的一步。
“特征”(Feature),是机器学习非常常用的术语,它其实就是可用于模型拟合的各种数据。前面讲朴素贝叶斯分类时,我解释了如何把现实世界中水果的各类特征转化为计算机所能理解的数据,这个过程其实就是最初级的特征工程。当然,特征工程远不止原始特征到计算机数据的转化,还包括特征选择、缺失值的填补和异常值的去除等等。这其中非常重要的一步就是特征选择。
越来越多的数据类型和维度的出现,会加大机器学习的难度,并影响最终的准确度。针对这种情形,特征选择尝试发掘和预定义任务相关的特征,同时过滤不必要的噪音特征。它主要包括特征子集的产生、搜索和评估。我们可以使用穷举法来找到最优的结果,但是如果特征有 NN
文章作者
上次更新 10100-01-10