14_前端技术应用(一):如何透明地支持数据库分库分表?
文章目录
从今天开始,我们正式进入了应用篇,我会用两节课的时间,带你应用编译器的前端技术。这样,你会把学到的编译技术和应用领域更好地结合起来,学以致用,让技术发挥应有的价值。还能通过实践加深对原理的理解,形成一个良好的循环。
这节课,我们主要讨论,一个分布式数据库领域的需求。我会带你设计一个中间层,让应用逻辑不必关心数据库的物理分布。这样,无论把数据库拆成多少个分库,编程时都会像面对一个物理库似的没什么区别。
接下来,我们先了解一下分布式数据库的需求和带来的挑战。
分布式数据库解决了什么问题,又带来了哪些挑战
随着技术的进步,我们编写的应用所采集、处理的数据越来越多,处理的访问请求也越来越多。而单一数据库服务器的处理能力是有限的,当数据量和访问量超过一定级别以后,就要开始做分库分表的操作。比如,把一个数据库的大表拆成几张表,把一个库拆成几个库,把读和写的操作分离开等等。我们把这类技术统称为分布式数据库技术。
分库分表(Sharding)有时也翻译成“数据库分片”。分片可以依据各种不同的策略,比如我开发过一个与社区有关的应用系统,这个系统的很多业务逻辑都是围绕小区展开的。对于这样的系统,按照地理分布的维度来分片就很合适,因为每次对数据库的操作基本上只会涉及其中一个分库。
假设我们有一个订单表,那么就可以依据一定的规则对订单或客户进行编号,编号中就包含地理编码。比如 SDYT 代表山东烟台,BJHD 代表北京海淀,不同区域的数据放在不同的分库中:
通过数据库分片,我们可以提高数据库服务的性能和可伸缩性。当数据量和访问量增加时,增加数据库节点的数量就行了。不过,虽然数据库的分片带来了性能和伸缩性的好处,但它也带来了一些挑战。
**最明显的一个挑战,是数据库分片逻辑侵入到业务逻辑中。**过去,应用逻辑只访问一个数据库,现在需要根据分片的规则,判断要去访问哪个数据库,再去跟这个数据库服务器连接。如果增加数据库分片,或者对分片策略进行调整,访问数据库的所有应用模块都要修改。这会让软件的维护变得更复杂,显然也不太符合软件工程中模块低耦合、把变化隔离的理念。
所以如果有一种技术,能让我们访问很多数据库分片时,像访问一个数据库那样就好了。数据库的物理分布,对应用是透明的。
可是,“理想很吸引人,现实很骨感”。要实现这个技术,需要解决很多问题:
**首先是跨库查询的难题。**如果 SQL 操作都针对一个库还好,但如果某个业务需求恰好要跨多个库,比如上面的例子中,如果要查询多个小区的住户信息,那么就要在多个库中都执行查询,然后把查询结果合并,一般还要排序。
如果我们前端显示的时候需要分页,每页显示一百行,那就更麻烦了。我们不可能从 10 个分库中各查出 10 行,合并成 100 行,这 100 行不一定排在前面,最差的情况,可能这 100 行恰好都在其中一个分库里。所以,你可能要从每个分库查出 100 行来,合并、排序后,再取出前 100 行。如果涉及数据库表跨库做连接,你想象一下,那就更麻烦了。
**其次就是跨库做写入的难题。**如果对数据库写入时遇到了跨库的情况,那么就必须实现分布式事务。所以,虽然分布式数据库的愿景很吸引人,但我们必须解决一系列技术问题。
这一讲,我们先解决最简单的问题,**也就是当每次数据操作仅针对一个分库的时候,能否自动确定是哪个分库的问题。**解决这个问题我们不需要依据别的信息,只需要提供 SQL 就行了。这就涉及对 SQL 语句的解析了,自然要用到编译技术。
解析 SQL 语句,判断访问哪个数据库
我画了一张简化版的示意图:假设有两张表,分别是订单表和客户表,它们的主键是 order_id 和 cust_id:
我们采用的分片策略,是依据这两个主键的前 4 位的编码来确定数据库分片的逻辑,比如:前四位是 SDYT,那就使用山东烟台的分片,如果是 BJHD,就使用北京海淀的分片,等等。
在我们的应用中,会对订单表进行一些增删改查的操作,比如会执行下面的 SQL 语句:
|
|
我们要能够解析这样的 SQL 语句,根据主键字段的值,决定去访问哪个分库或者分表。这就需要用到编译器前端技术,包括词法分析、语法分析和语义分析。
听到这儿,你可能会质疑:“解析 SQL 语句?是在开玩笑吗?”你可能觉得这个任务太棘手,犹豫着是否要忍受业务逻辑和技术逻辑混杂的缺陷,把判断分片的逻辑写到应用代码里,或者想解决这个问题,又或者想自己写一个开源项目,帮到更多的人。
无论你的内心活动如何,应用编译技术,能让你有更强的信心解决这个问题。那么如何去做呢?要想完成解析 SQL 的任务,在词法分析和语法分析这两个阶段,我建议你采用工具快速落地,比如 Antlr。你要找一个现成的 SQL 语句的语法规则文件。
GitHub 中,那个收集了很多示例 Antlr 规则文件的项目里,有两个可以参考的规则:一个是PLSQL的(它是 Oracle 数据库的 SQL 语法);一个是SQLite的(这是一个嵌入式数据库)。
实际上,我还找到 MySQL workbench 所使用的一个产品级的规则文件。MySQL workbench 是一个图形化工具,用于管理和访问 MySQL。这个规则文件还是很靠谱的,不过它里面嵌了很多属性计算规则,而且是 C++ 语言写的,我嫌处理起来麻烦,就先弃之不用,暂且采用 SQLite 的规则文件来做示范。
先来看一下这个文件里的一些规则,例如 select 语句相关的语法:
|
|
我们可以一边看这个语法规则,一边想几个 select 语句做一做验证。你可以思考一下,这个规则是怎么把 select 语句拆成不同的部分的。
SQL 里面也有表达式,我们研究一下它的表达式的规则:
|
|
你可能会觉得 SQL 的表达式的规则跟其他语言的表达式规则很像。比如都支持加减乘除、关系比较、逻辑运算等等。而且从这个规则文件里,你一下子就能看出各种运算的优先级,比如你会注意到,字符串连接操作“||”比乘法和除法的优先级更高。所以,研究一门语言时积累的经验,在研究下一门语言时仍然有用。
有了规则文件之后,接下来,我们用 Antlr 生成词法分析器和语法分析器:
|
|
在这个命令里,我用 -package 参数指定了生成的 Java 代码的包是 dsql.parser。dsql 是分布式 SQL 的意思。接着,我们可以写一点儿程序测试一下所生成的词法分析器和语法分析器:
|
|
这段程序的输出是 LISP 格式的 AST,我调整了一下缩进,让它显得更像一棵树:
|
|
从 AST 中,我们可以清晰地看出这个 select 语句是如何被解析成结构化数据的,再继续写点儿代码,就能获得想要的信息了。
接下来的任务是:对于访问订单表的 select 语句,要在 where 子句里找出 cust_id=“客户编号"或 order_id=“订单编号"这样的条件,从而能够根据客户编号或订单编号确定采用哪个分库。
怎么实现呢?很简单,我们用 visitor 模式遍历一下 AST 就可以了:
|
|
获取表名和 where 子句条件的代码在 SQLVisitor.java 中。因为已经有了 AST,抽取这些信息是不难的。你可以点开我在文稿中提供的链接,查看示例代码。
我们的示例离实用还有多大差距?
目前,我们已经初步解决了数据库访问透明化的问题。当然,这只是一个示例,如果要做得严密、实用,我们还要补充一些工作。
**我们需要做一些语义分析工作,确保 SQL 语句的合法性。**语法分析并不能保证程序代码完全合法,我们必须进行很多语义的检查才行。
我给订单表起的名字,是 orders。如果你把表名称改为 order,那么必须用引号引起来,写成’order’,不带引号的 order 会被认为是一个关键字。因为在 SQL 中我们可以使用 order by 这样的子句,这时候,order 这个表名就会被混淆,进而被解析错误。这个语法解析程序会在表名的地方出现一个 order 节点,这在语义上是不合法的,需要被检查出来并报错。
**如果要检查语义的正确性,我们还必须了解数据库的元数据。**否则,就没有办法判断在 SQL 语句中是否使用了正确的字段,以及正确的数据类型。除此之外,我们还需要扩展到能够识别跨库操作,比如下面这样一个 where 条件:
|
|
分析这个查询条件,可以知道数据是存在两个不同的数据库中的。但是我们要让解析程序分析出这个结果,甚至让它针对更加复杂的条件,也能分析出来。这就需要更加深入的语义分析功能了。
**最后,解析器的速度也是一个需要考虑的因素。**因为执行每个 SQL 都需要做一次解析,而这个时间就加在了每一次数据库访问上。所以,SQL 解析的时间越少越好。因此,有的项目就会尽量提升解析效率。**阿里有一个开源项目 Druid,是一个数据库连接池。**这个项目强调性能,因此他们纯手写了一个 SQL 解析器,尽可能地提升性能。
总之,要实现一个完善的工具,让工具达到产品级的质量,有不少工作要做。如果要支持更强的分布式数据库功能,还要做更多的工作。不过,你应该不会觉得这事儿有多么难办了吧?至少在编译技术这部分你是有信心的。
在这里,我还想讲一讲 SQL 防注入这个问题。SQL 注入攻击是一种常见的攻击手段。你向服务器请求一个 url 的时候,可以把恶意的 SQL 嵌入到参数里面,这样形成的 SQL 就是不安全的。
以前面的 SQL 语句为例,这个 select 语句本来只是查询一个订单,订单编号“SDYT20190805XXXX”作为参数传递给服务端的一个接口,服务端收到参数以后,用单引号把这个参数引起来,并加上其他部分,就组装成下面的 SQL 并执行:
|
|
如果我们遇到了一个恶意攻击者,他可能把参数写成“SDYT20190805XXXX’;drop table customers; –”。服务器接到这个参数以后,仍然把它拿单引号引起来,并组装成 SQL,组装完毕以后就是下面的语句:
|
|
如果你看不清楚,我分行写一下,这样你就知道它是怎么把你宝贵的客户信息全都删掉的:
|
|
**所以 SQL 注入有很大的危害。**而我们一般用检查客户端传过来的参数的方法,看看有没有 SQL 语句中的关键字,来防止 SQL 注入。不过这是比较浅的防御,有时还会漏过一些非法参数,所以要在 SQL 执行之前,做最后一遍检查。而这个时候,就要运用编译器前端技术来做 SQL 的解析了。借此,我们能检查出来异常:明明这个功能是做查询的,为什么形成的 SQL 会有删除表的操作?
通过这个例子,我们又分析了一种场景:开发一个安全可靠的系统,用编译技术做 SQL 分析是必须做的一件事情。
课程小结
今天,我带你利用学到的编译器前端技术,解析了 SQL 语句,并针对分布式数据库透明查询的功能做了一次概念证明。
SQL 是程序员经常打交道的语言。有时,我们会遇到需要解析 SQL 语言的需求,除了分布式数据库场景的需求以外,Hibernate 对 HQL 的解析,也跟解析 SQL 差不多。而且,最近有一种技术,能够通过 RESTful 这样的接口做通用的查询,其实也是一种类 SQL 的子语言。
当然了,今天我们只是基于工具做解析。一方面,有时候我们就是需要做个原型系统或者最小的能用的系统,有时间有资源了,再追求完美也不为过,比如追求编译速度的提升。另一方面,你能看到 MySQL workbench 也是用 Antlr 来作帮手的,在很多情况下,Antlr 这样的工具生成的解析器足够用,甚至比你手写的还要好,所以,我们大可以节省时间,用工具做解析。
可能你会觉得,实际应用的难度似乎要低于学习原理的难度。如果你有这个感觉,那就对了,这说明你已经掌握了原理篇的内容,所以日常的一些应用根本不是问题,你可以找出更多的应用场景来练练手。
一课一思
你在工作中,是否遇到过其他需要解析 SQL 的场景?另外,当你阅读了 SQL 的规则文件之后,是否发现了它跟 Java 这样的语言规则的不同之处?是更加简单还是更复杂?欢迎在留言区写下你的发现。
最后,感谢你的阅读,如果这篇文章让你有所收获,也欢迎你将它分享给更多的朋友。
文章作者
上次更新 10100-01-10