加餐1__带你吃透课程中Java_8的那些重要知识点(上)
文章目录
你好,我是朱晔。
Java 8 是目前最常用的 JDK 版本,在增强代码可读性、简化代码方面,相比 Java 7 增加了很多功能,比如 Lambda、Stream 流操作、并行流(ParallelStream)、Optional 可空类型、新日期时间类型等。
这个课程中的所有案例,都充分使用了 Java 8 的各种特性来简化代码。这也就意味着,如果你不了解这些特性的话,理解课程内的 Demo 可能会有些困难。因此,我将这些特性,单独拎了出来组成了两篇加餐。由于后面有单独一节课去讲 Java 8 的日期时间类型,所以这里就不赘述了。
如何在项目中用上 Lambda 表达式和 Stream 操作?
Java 8 的特性有很多,除了这两篇加餐外,我再给你推荐一本全面介绍 Java 8 的书,叫《Java 实战(第二版)》。此外,有同学在留言区问,怎么把 Lambda 表达式和 Stream 操作运用到项目中。其实,业务代码中可以使用这些特性的地方有很多。
这里,为了帮助你学习,并把这些特性用到业务开发中,我有三个小建议。
第一,从 List 的操作开始,先尝试把遍历 List 来筛选数据和转换数据的操作,使用 Stream 的 filter 和 map 实现,这是 Stream 最常用、最基本的两个 API。你可以重点看看接下来两节的内容来入门。
第二,使用高级的 IDE 来写代码,以此找到可以利用 Java 8 语言特性简化代码的地方。比如,对于 IDEA,我们可以把匿名类型使用 Lambda 替换的检测规则,设置为 Error 级别严重程度:
这样运行 IDEA 的 Inspect Code 的功能,可以在 Error 级别的错误中看到这个问题,引起更多关注,帮助我们建立使用 Lambda 表达式的习惯:
第三,如果你不知道如何把匿名类转换为 Lambda 表达式,可以借助 IDE 来重构:
反过来,如果你在学习课程内案例时,如果感觉阅读 Lambda 表达式和 Stream API 比较吃力,同样可以借助 IDE 把 Java 8 的写法转换为使用循环的写法:
或者是把 Lambda 表达式替换为匿名类:
Lambda 表达式
Lambda 表达式的初衷是,进一步简化匿名类的语法(不过实现上,Lambda 表达式并不是匿名类的语法糖),使 Java 走向函数式编程。对于匿名类,虽然没有类名,但还是要给出方法定义。这里有个例子,分别使用匿名类和 Lambda 表达式创建一个线程打印字符串:
//匿名类
new Thread(new Runnable(){
@Override
public void run(){
System.out.println(“hello1”);
}
}).start();
//Lambda 表达式
new Thread(() -> System.out.println(“hello2”)).start();
那么,Lambda 表达式如何匹配 Java 的类型系统呢?
答案就是,函数式接口。
函数式接口是一种只有单一抽象方法的接口,使用 @FunctionalInterface 来描述,可以隐式地转换成 Lambda 表达式。使用 Lambda 表达式来实现函数式接口,不需要提供类名和方法定义,通过一行代码提供函数式接口的实例,就可以让函数成为程序中的头等公民,可以像普通数据一样作为参数传递,而不是作为一个固定的类中的固定方法。
那,函数式接口到底是什么样的呢?java.util.function 包中定义了各种函数式接口。比如,用于提供数据的 Supplier 接口,就只有一个 get 抽象方法,没有任何入参、有一个返回值:
@FunctionalInterface
public interface Supplier
/**
* Gets a result.
*
* @return a result
*/
T get();
}
我们可以使用 Lambda 表达式或方法引用,来得到 Supplier 接口的实例:
//使用 Lambda 表达式提供 Supplier 接口实现,返回 OK 字符串
Supplier
//使用方法引用提供 Supplier 接口实现,返回空字符串
Supplier
这样,是不是很方便?为了帮你掌握函数式接口及其用法,我再举几个使用 Lambda 表达式或方法引用来构建函数的例子:
//Predicate 接口是输入一个参数,返回布尔值。我们通过 and 方法组合两个 Predicate 条件,判断是否值大于 0 并且是偶数
Predicate
Predicate
assertTrue(positiveNumber.and(evenNumber).test(2));
//Consumer 接口是消费一个数据。我们通过 andThen 方法组合调用两个 Consumer,输出两行 abcdefg
Consumer
println.andThen(println).accept(“abcdefg”);
//Function 接口是输入一个数据,计算后输出一个数据。我们先把字符串转换为大写,然后通过 andThen 组合另一个 Function 实现字符串拼接
Function<String, String> upperCase = String::toUpperCase;
Function<String, String> duplicate = s -> s.concat(s);
assertThat(upperCase.andThen(duplicate).apply(“test”), is(“TESTTEST”));
//Supplier 是提供一个数据的接口。这里我们实现获取一个随机数
Supplier
System.out.println(random.get());
//BinaryOperator 是输入两个同类型参数,输出一个同类型参数的接口。这里我们通过方法引用获得一个整数加法操作,通过 Lambda 表达式定义一个减法操作,然后依次调用
BinaryOperator
BinaryOperator
assertThat(subtraction.apply(add.apply(1, 2), 3), is(0));
Predicate、Function 等函数式接口,还使用 default 关键字实现了几个默认方法。这样一来,它们既可以满足函数式接口只有一个抽象方法,又能为接口提供额外的功能:
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
default
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
default
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
}
很明显,Lambda 表达式给了我们复用代码的更多可能性:我们可以把一大段逻辑中变化的部分抽象出函数式接口,由外部方法提供函数实现,重用方法内的整体逻辑处理。
不过需要注意的是,在自定义函数式接口之前,可以先确认下java.util.function 包中的 43 个标准函数式接口是否能满足需求,我们要尽可能重用这些接口,因为使用大家熟悉的标准接口可以提高代码的可读性。
使用 Java 8 简化代码
这一部分,我会通过几个具体的例子,带你感受一下使用 Java 8 简化代码的三个重要方面:
- 使用 Stream 简化集合操作;
- 使用 Optional 简化判空逻辑;
- JDK8 结合 Lambda 和 Stream 对各种类的增强。
使用 Stream 简化集合操作
Lambda 表达式可以帮我们用简短的代码实现方法的定义,给了我们复用代码的更多可能性。利用这个特性,我们可以把集合的投影、转换、过滤等操作抽象成通用的接口,然后通过 Lambda 表达式传入其具体实现,这也就是 Stream 操作。
我们看一个具体的例子。这里有一段 20 行左右的代码,实现了如下的逻辑:
- 把整数列表转换为 Point2D 列表;
- 遍历 Point2D 列表过滤出 Y 轴 >1 的对象;
- 计算 Point2D 点到原点的距离;
- 累加所有计算出的距离,并计算距离的平均值。
private static double calc(List
//临时中间集合
List
for (Integer i : ints) {
point2DList.add(new Point2D.Double((double) i % 3, (double) i / 3));
}
//临时变量,纯粹是为了获得最后结果需要的中间变量
double total = 0;
int count = 0;
for (Point2D point2D : point2DList) {
//过滤
if (point2D.getY() > 1) {
//算距离
double distance = point2D.distance(0, 0);
total += distance;
count++;
}
}
//注意 count 可能为 0 的可能
return count >0 ? total / count : 0;
}
现在,我们可以使用 Stream 配合 Lambda 表达式来简化这段代码。简化后一行代码就可以实现这样的逻辑,更重要的是代码可读性更强了,通过方法名就可以知晓大概是在做什么事情。比如:
- map 方法传入的是一个 Function,可以实现对象转换;
- filter 方法传入一个 Predicate,实现对象的布尔判断,只保留返回 true 的数据;
- mapToDouble 用于把对象转换为 double;
- 通过 average 方法返回一个 OptionalDouble,代表可能包含值也可能不包含值的可空 double。
下面的第三行代码,就实现了上面方法的所有工作:
List
double average = calc(ints);
double streamResult = ints.stream()
.map(i -> new Point2D.Double((double) i % 3, (double) i / 3))
.filter(point -> point.getY() > 1)
.mapToDouble(point -> point.distance(0, 0))
.average()
.orElse(0);
//如何用一行代码来实现,比较一下可读性
assertThat(average, is(streamResult));
到这里,你可能会问了,OptionalDouble 又是怎么回事儿?
有关 Optional 可空类型
其实,类似 OptionalDouble、OptionalInt、OptionalLong 等,是服务于基本类型的可空对象。此外,Java8 还定义了用于引用类型的 Optional 类。使用 Optional,不仅可以避免使用 Stream 进行级联调用的空指针问题;更重要的是,它提供了一些实用的方法帮我们避免判空逻辑。
如下是一些例子,演示了如何使用 Optional 来避免空指针,以及如何使用它的 fluent API 简化冗长的 if-else 判空逻辑:
@Test(expected = IllegalArgumentException.class)
public void optional() {
//通过 get 方法获取 Optional 中的实际值
assertThat(Optional.of(1).get(), is(1));
//通过 ofNullable 来初始化一个 null,通过 orElse 方法实现 Optional 中无数据的时候返回一个默认值
assertThat(Optional.ofNullable(null).orElse(“A”), is(“A”));
//OptionalDouble 是基本类型 double 的 Optional 对象,isPresent 判断有无数据
assertFalse(OptionalDouble.empty().isPresent());
//通过 map 方法可以对 Optional 对象进行级联转换,不会出现空指针,转换后还是一个 Optional
assertThat(Optional.of(1).map(Math::incrementExact).get(), is(2));
//通过 filter 实现 Optional 中数据的过滤,得到一个 Optional,然后级联使用 orElse 提供默认值
assertThat(Optional.of(1).filter(integer -> integer % 2 == 0).orElse(null), is(nullValue()));
//通过 orElseThrow 实现无数据时抛出异常
Optional.empty().orElseThrow(IllegalArgumentException::new);
}
我把 Optional 类的常用方法整理成了一张图,你可以对照案例再复习一下:
Java 8 类对于函数式 API 的增强
除了 Stream 之外,Java 8 中有很多类也都实现了函数式的功能。
比如,要通过 HashMap 实现一个缓存的操作,在 Java 8 之前我们可能会写出这样的 getProductAndCache 方法:先判断缓存中是否有值;如果没有值,就从数据库搜索取值;最后,把数据加入缓存。
private Map<Long, Product> cache = new ConcurrentHashMap<>();
private Product getProductAndCache(Long id) {
Product product = null;
//Key 存在,返回 Value
if (cache.containsKey(id)) {
product = cache.get(id);
} else {
//不存在,则获取 Value
//需要遍历数据源查询获得 Product
for (Product p : Product.getData()) {
if (p.getId().equals(id)) {
product = p;
break;
}
}
//加入 ConcurrentHashMap
if (product != null)
cache.put(id, product);
}
return product;
}
@Test
public void notcoolCache() {
getProductAndCache(1L);
getProductAndCache(100L);
System.out.println(cache);
assertThat(cache.size(), is(1));
assertTrue(cache.containsKey(1L));
}
而在 Java 8 中,我们利用 ConcurrentHashMap 的 computeIfAbsent 方法,用一行代码就可以实现这样的繁琐操作:
private Product getProductAndCacheCool(Long id) {
return cache.computeIfAbsent(id, i -> //当 Key 不存在的时候提供一个 Function 来代表根据 Key 获取 Value 的过程
Product.getData().stream()
.filter(p -> p.getId().equals(i)) //过滤
.findFirst() //找第一个,得到 Optional
.orElse(null)); //如果找不到 Product,则使用 null
}
@Test
public void coolCache()
{
getProductAndCacheCool(1L);
getProductAndCacheCool(100L);
System.out.println(cache);
assertThat(cache.size(), is(1));
assertTrue(cache.containsKey(1L));
}
computeIfAbsent 方法在逻辑上相当于:
if (map.get(key) == null) {
V newValue = mappingFunction.apply(key);
if (newValue != null)
map.put(key, newValue);
}
又比如,利用 Files.walk 返回一个 Path 的流,通过两行代码就能实现递归搜索 +grep 的操作。整个逻辑是:递归搜索文件夹,查找所有的.java 文件;然后读取文件每一行内容,用正则表达式匹配 public class 关键字;最后输出文件名和这行内容。
@Test
public void filesExample() throws IOException {
//无限深度,递归遍历文件夹
try (Stream
pathStream.filter(Files::isRegularFile) //只查普通文件
.filter(FileSystems.getDefault().getPathMatcher(“glob:**/*.java”)::matches) //搜索 java 源码文件
.flatMap(ThrowingFunction.unchecked(path ->
Files.readAllLines(path).stream() //读取文件内容,转换为 Stream
.filter(line -> Pattern.compile(“public class”).matcher(line).find()) //使用正则过滤带有 public class 的行
.map(line -> path.getFileName() + " » " + line))) //把这行文件内容转换为文件名 + 行
.forEach(System.out::println); //打印所有的行
}
}
输出结果如下:
我再和你分享一个小技巧吧。因为 Files.readAllLines 方法会抛出一个受检异常(IOException),所以我使用了一个自定义的函数式接口,用 ThrowingFunction 包装这个方法,把受检异常转换为运行时异常,让代码更清晰:
@FunctionalInterface
public interface ThrowingFunction<T, R, E extends Throwable> {
static <T, R, E extends Throwable> Function<T, R> unchecked(ThrowingFunction<T, R, E> f) {
return t -> {
try {
return f.apply(t);
} catch (Throwable e) {
throw new RuntimeException(e);
}
};
}
R apply(T t) throws E;
}
如果用 Java 7 实现类似逻辑的话,大概需要几十行代码,你可以尝试下。
并行流
前面我们看到的 Stream 操作都是串行 Stream,操作只是在一个线程中执行,此外 Java 8 还提供了并行流的功能:通过 parallel 方法,一键把 Stream 转换为并行操作提交到线程池处理。
比如,如下代码通过线程池来并行消费处理 1 到 100:
IntStream.rangeClosed(1,100).parallel().forEach(i->{
System.out.println(LocalDateTime.now() + " : " + i);
try {
Thread.sleep(1000);
} catch (InterruptedException e) { }
});
并行流不确保执行顺序,并且因为每次处理耗时 1 秒,所以可以看到在 8 核机器上,数组是按照 8 个一组 1 秒输出一次:
在这个课程中,有很多类似使用 threadCount 个线程对某个方法总计执行 taskCount 次操作的案例,用于演示并发情况下的多线程问题或多线程处理性能。除了会用到并行流,我们有时也会使用线程池或直接使用线程进行类似操作。为了方便你对比各种实现,这里我一次性给出实现此类操作的五种方式。
为了测试这五种实现方式,我们设计一个场景:使用 20 个线程(threadCount)以并行方式总计执行 10000 次(taskCount)操作。因为单个任务单线程执行需要 10 毫秒(任务代码如下),也就是每秒吞吐量是 100 个操作,那 20 个线程 QPS 是 2000,执行完 10000 次操作最少耗时 5 秒。
private void increment(AtomicInteger atomicInteger) {
atomicInteger.incrementAndGet();
try {
TimeUnit.MILLISECONDS.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
现在我们测试一下这五种方式,是否都可以利用更多的线程并行执行操作。
第一种方式是使用线程。直接把任务按照线程数均匀分割,分配到不同的线程执行,使用 CountDownLatch 来阻塞主线程,直到所有线程都完成操作。这种方式,需要我们自己分割任务:
private int thread(int taskCount, int threadCount) throws InterruptedException {
//总操作次数计数器
AtomicInteger atomicInteger = new AtomicInteger();
//使用 CountDownLatch 来等待所有线程执行完成
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
//使用 IntStream 把数字直接转为 Thread
IntStream.rangeClosed(1, threadCount).mapToObj(i -> new Thread(() -> {
//手动把 taskCount 分成 taskCount 份,每一份有一个线程执行
IntStream.rangeClosed(1, taskCount / threadCount).forEach(j -> increment(atomicInteger));
//每一个线程处理完成自己那部分数据之后,countDown 一次
countDownLatch.countDown();
})).forEach(Thread::start);
//等到所有线程执行完成
countDownLatch.await();
//查询计数器当前值
return atomicInteger.get();
}
第二种方式是,使用 Executors.newFixedThreadPool 来获得固定线程数的线程池,使用 execute 提交所有任务到线程池执行,最后关闭线程池等待所有任务执行完成:
private int threadpool(int taskCount, int threadCount) throws InterruptedException {
//总操作次数计数器
AtomicInteger atomicInteger = new AtomicInteger();
//初始化一个线程数量=threadCount 的线程池
ExecutorService executorService = Executors.newFixedThreadPool(threadCount);
//所有任务直接提交到线程池处理
IntStream.rangeClosed(1, taskCount).forEach(i -> executorService.execute(() -> increment(atomicInteger)));
//提交关闭线程池申请,等待之前所有任务执行完成
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.HOURS);
//查询计数器当前值
return atomicInteger.get();
}
第三种方式是,使用 ForkJoinPool 而不是普通线程池执行任务。
ForkJoinPool 和传统的 ThreadPoolExecutor 区别在于,前者对于 n 并行度有 n 个独立队列,后者是共享队列。如果有大量执行耗时比较短的任务,ThreadPoolExecutor 的单队列就可能会成为瓶颈。这时,使用 ForkJoinPool 性能会更好。
因此,ForkJoinPool 更适合大任务分割成许多小任务并行执行的场景,而 ThreadPoolExecutor 适合许多独立任务并发执行的场景。
在这里,我们先自定义一个具有指定并行数的 ForkJoinPool,再通过这个 ForkJoinPool 并行执行操作:
private int forkjoin(int taskCount, int threadCount) throws InterruptedException {
//总操作次数计数器
AtomicInteger atomicInteger = new AtomicInteger();
//自定义一个并行度=threadCount 的 ForkJoinPool
ForkJoinPool forkJoinPool = new ForkJoinPool(threadCount);
//所有任务直接提交到线程池处理
forkJoinPool.execute(() -> IntStream.rangeClosed(1, taskCount).parallel().forEach(i -> increment(atomicInteger)));
//提交关闭线程池申请,等待之前所有任务执行完成
forkJoinPool.shutdown();
forkJoinPool.awaitTermination(1, TimeUnit.HOURS);
//查询计数器当前值
return atomicInteger.get();
}
第四种方式是,直接使用并行流,并行流使用公共的 ForkJoinPool,也就是 ForkJoinPool.commonPool()。
公共的 ForkJoinPool 默认的并行度是 CPU 核心数 -1,原因是对于 CPU 绑定的任务分配超过 CPU 个数的线程没有意义。由于并行流还会使用主线程执行任务,也会占用一个 CPU 核心,所以公共 ForkJoinPool 的并行度即使 -1 也能用满所有 CPU 核心。
这里,我们通过配置强制指定(增大)了并行数,但因为使用的是公共 ForkJoinPool,所以可能会存在干扰,你可以回顾下第 3 讲有关线程池混用产生的问题:
private int stream(int taskCount, int threadCount) {
//设置公共 ForkJoinPool 的并行度
System.setProperty(“java.util.concurrent.ForkJoinPool.common.parallelism”, String.valueOf(threadCount));
//总操作次数计数器
AtomicInteger atomicInteger = new AtomicInteger();
//由于我们设置了公共 ForkJoinPool 的并行度,直接使用 parallel 提交任务即可
IntStream.rangeClosed(1, taskCount).parallel().forEach(i -> increment(atomicInteger));
//查询计数器当前值
return atomicInteger.get();
}
第五种方式是,使用 CompletableFuture 来实现。CompletableFuture.runAsync 方法可以指定一个线程池,一般会在使用 CompletableFuture 的时候用到:
private int completableFuture(int taskCount, int threadCount) throws InterruptedException, ExecutionException {
//总操作次数计数器
AtomicInteger atomicInteger = new AtomicInteger();
//自定义一个并行度=threadCount 的 ForkJoinPool
ForkJoinPool forkJoinPool = new ForkJoinPool(threadCount);
//使用 CompletableFuture.runAsync 通过指定线程池异步执行任务
CompletableFuture.runAsync(() -> IntStream.rangeClosed(1, taskCount).parallel().forEach(i -> increment(atomicInteger)), forkJoinPool).get();
//查询计数器当前值
return atomicInteger.get();
}
上面这五种方法都可以实现类似的效果:
可以看到,这 5 种方式执行完 10000 个任务的耗时都在 5.4 秒到 6 秒之间。这里的结果只是证明并行度的设置是有效的,并不是性能比较。
如果你的程序对性能要求特别敏感,建议通过性能测试根据场景决定适合的模式。一般而言,使用线程池(第二种)和直接使用并行流(第四种)的方式在业务代码中比较常用。但需要注意的是,我们通常会重用线程池,而不会像 Demo 中那样在业务逻辑中直接声明新的线程池,等操作完成后再关闭。
另外需要注意的是,在上面的例子中我们一定是先运行 stream 方法再运行 forkjoin 方法,对公共 ForkJoinPool 默认并行度的修改才能生效。
这是因为 ForkJoinPool 类初始化公共线程池是在静态代码块里,加载类时就会进行的,如果 forkjoin 方法中先使用了 ForkJoinPool,即便 stream 方法中设置了系统属性也不会起作用。因此我的建议是,设置 ForkJoinPool 公共线程池默认并行度的操作,应该放在应用启动时设置。
重点回顾
今天,我和你简单介绍了 Java 8 中最重要的几个功能,包括 Lambda 表达式、Stream 流式操作、Optional 可空对象、并行流操作。这些特性,可以帮助我们写出简单易懂、可读性更强的代码。特别是使用 Stream 的链式方法,可以用一行代码完成之前几十行代码的工作。
因为 Stream 的 API 非常多,使用方法也是千变万化,因此我会在下一讲和你详细介绍 Stream API 的一些使用细节。
今天用到的代码,我都放在了 GitHub 上,你可以点击这个链接查看。
思考与讨论
- 检查下代码中是否有使用匿名类,以及通过遍历 List 进行数据过滤、转换和聚合的代码,看看能否使用 Lambda 表达式和 Stream 来重新实现呢?
- 对于并行流部分的并行消费处理 1 到 100 的例子,如果把 forEach 替换为 forEachOrdered,你觉得会发生什么呢?
关于 Java 8,你还有什么使用心得吗?我是朱晔,欢迎在评论区与我留言分享你的想法,也欢迎你把这篇文章分享给你的朋友或同事,一起交流。
文章作者
上次更新 10100-01-10