41__如何设计更优的分布式锁?
文章目录
你好,我是刘超。
从这一讲开始,我们就正式进入最后一个模块的学习了,综合性实战的内容来自我亲身经历过的一些案例,其中用到的知识点会相对综合,现在是时候跟我一起调动下前面所学了!
去年双十一,我们的游戏商城也搞了一波活动,那时候我就发现在数据库操作日志中,出现最多的一个异常就是 Interrupted Exception 了,几乎所有的异常都是来自一个校验订单幂等性的 SQL。
因为校验订单幂等性是提交订单业务中第一个操作数据库的,所以幂等性校验也就承受了比较大的请求量,再加上我们还是基于一个数据库表来实现幂等性校验的,所以出现了一些请求事务超时,事务被中断的情况。其实基于数据库实现的幂等性校验就是一种分布式锁的实现。
那什么是分布式锁呢,它又是用来解决哪些问题的呢?
在 JVM 中,在多线程并发的情况下,我们可以使用同步锁或 Lock 锁,保证在同一时间内,只能有一个线程修改共享变量或执行代码块。但现在我们的服务基本都是基于分布式集群来实现部署的,对于一些共享资源,例如我们之前讨论过的库存,在分布式环境下使用 Java 锁的方式就失去作用了。
这时,我们就需要实现分布式锁来保证共享资源的原子性。除此之外,分布式锁也经常用来避免分布式中的不同节点执行重复性的工作,例如一个定时发短信的任务,在分布式集群中,我们只需要保证一个服务节点发送短信即可,一定要避免多个节点重复发送短信给同一个用户。
因为数据库实现一个分布式锁比较简单易懂,直接基于数据库实现就行了,不需要再引入第三方中间件,所以这是很多分布式业务实现分布式锁的首选。但是数据库实现的分布式锁在一定程度上,存在性能瓶颈。
接下来我们一起了解下如何使用数据库实现分布式锁,其性能瓶颈到底在哪,有没有其它实现方式可以优化分布式锁。
数据库实现分布式锁
首先,我们应该创建一个锁表,通过创建和查询数据来保证一个数据的原子性:
|
|
其次,如果是校验订单的幂等性,就要先查询该记录是否存在数据库中,查询的时候要防止幻读,如果不存在,就插入到数据库,否则,放弃操作。
|
|
最后注意下,除了查询时防止幻读,我们还需要保证查询和插入是在同一个事务中,因此我们需要申明事务,具体的实现代码如下:
|
|
到这,我们订单幂等性校验的分布式锁就实现了。我想你应该能发现为什么这种方式会存在性能瓶颈了。我们在第 34 讲中讲过,在 RR 事务级别,select 的 for update 操作是基于间隙锁 gap lock 实现的,这是一种悲观锁的实现方式,所以存在阻塞问题。
因此在高并发情况下,当有大量的请求进来时,大部分的请求都会进行排队等待。为了保证数据库的稳定性,事务的超时时间往往又设置得很小,所以就会出现大量事务被中断的情况。
除了阻塞等待之外,因为订单没有删除操作,所以这张锁表的数据将会逐渐累积,我们需要设置另外一个线程,隔一段时间就去删除该表中的过期订单,这就增加了业务的复杂度。
除了这种幂等性校验的分布式锁,有一些单纯基于数据库实现的分布式锁代码块或对象,是需要在锁释放时,删除或修改数据的。如果在获取锁之后,锁一直没有获得释放,即数据没有被删除或修改,这将会引发死锁问题。
Zookeeper 实现分布式锁
除了数据库实现分布式锁的方式以外,我们还可以基于 Zookeeper 实现。Zookeeper 是一种提供“分布式服务协调“的中心化服务,正是 Zookeeper 的以下两个特性,分布式应用程序才可以基于它实现分布式锁功能。
**顺序临时节点:**Zookeeper 提供一个多层级的节点命名空间(节点称为 Znode),每个节点都用一个以斜杠(/)分隔的路径来表示,而且每个节点都有父节点(根节点除外),非常类似于文件系统。
节点类型可以分为持久节点(PERSISTENT)、临时节点(EPHEMERAL),每个节点还能被标记为有序性(SEQUENTIAL),一旦节点被标记为有序性,那么整个节点就具有顺序自增的特点。一般我们可以组合这几类节点来创建我们所需要的节点,例如,创建一个持久节点作为父节点,在父节点下面创建临时节点,并标记该临时节点为有序性。
**Watch 机制:**Zookeeper 还提供了另外一个重要的特性,Watcher(事件监听器)。ZooKeeper 允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知给用户。
我们熟悉了 Zookeeper 的这两个特性之后,就可以看看 Zookeeper 是如何实现分布式锁的了。
首先,我们需要建立一个父节点,节点类型为持久节点(PERSISTENT) ,每当需要访问共享资源时,就会在父节点下建立相应的顺序子节点,节点类型为临时节点(EPHEMERAL),且标记为有序性(SEQUENTIAL),并且以临时节点名称 + 父节点名称 + 顺序号组成特定的名字。
在建立子节点后,对父节点下面的所有以临时节点名称 name 开头的子节点进行排序,判断刚刚建立的子节点顺序号是否是最小的节点,如果是最小节点,则获得锁。
如果不是最小节点,则阻塞等待锁,并且获得该节点的上一顺序节点,为其注册监听事件,等待节点对应的操作获得锁。
当调用完共享资源后,删除该节点,关闭 zk,进而可以触发监听事件,释放该锁。
以上实现的分布式锁是严格按照顺序访问的并发锁。一般我们还可以直接引用 Curator 框架来实现 Zookeeper 分布式锁,代码如下:
|
|
Zookeeper 实现的分布式锁,例如相对数据库实现,有很多优点。Zookeeper 是集群实现,可以避免单点问题,且能保证每次操作都可以有效地释放锁,这是因为一旦应用服务挂掉了,临时节点会因为 session 连接断开而自动删除掉。
由于频繁地创建和删除结点,加上大量的 Watch 事件,对 Zookeeper 集群来说,压力非常大。且从性能上来说,其与接下来我要讲的 Redis 实现的分布式锁相比,还是存在一定的差距。
Redis 实现分布式锁
相对于前两种实现方式,基于 Redis 实现的分布式锁是最为复杂的,但性能是最佳的。
大部分开发人员利用 Redis 实现分布式锁的方式,都是使用 SETNX+EXPIRE 组合来实现,在 Redis 2.6.12 版本之前,具体实现代码如下:
|
|
这种方式实现的分布式锁,是通过 setnx() 方法设置锁,如果 lockKey 存在,则返回失败,否则返回成功。设置成功之后,为了能在完成同步代码之后成功释放锁,方法中还需要使用 expire() 方法给 lockKey 值设置一个过期时间,确认 key 值删除,避免出现锁无法释放,导致下一个线程无法获取到锁,即死锁问题。
如果程序在设置过期时间之前、设置锁之后出现崩溃,此时如果 lockKey 没有设置过期时间,将会出现死锁问题。
在 Redis 2.6.12 版本后 SETNX 增加了过期时间参数:
|
|
我们也可以通过 Lua 脚本来实现锁的设置和过期时间的原子性,再通过 jedis.eval() 方法运行该脚本:
|
|
虽然 SETNX 方法保证了设置锁和过期时间的原子性,但如果我们设置的过期时间比较短,而执行业务时间比较长,就会存在锁代码块失效的问题。我们需要将过期时间设置得足够长,来保证以上问题不会出现。
这个方案是目前最优的分布式锁方案,但如果是在 Redis 集群环境下,依然存在问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Master 节点获取到锁后,在没有同步到其它节点时,Master 节点崩溃了,此时新的 Master 节点依然可以获取锁,所以多个应用服务可以同时获取到锁。
Redlock 算法
Redisson 由 Redis 官方推出,它是一个在 Redis 的基础上实现的 Java 驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的 Java 常用对象,还提供了许多分布式服务。Redisson 是基于 netty 通信框架实现的,所以支持非阻塞通信,性能相对于我们熟悉的 Jedis 会好一些。
Redisson 中实现了 Redis 分布式锁,且支持单点模式和集群模式。在集群模式下,Redisson 使用了 Redlock 算法,避免在 Master 节点崩溃切换到另外一个 Master 时,多个应用同时获得锁。我们可以通过一个应用服务获取分布式锁的流程,了解下 Redlock 算法的实现:
在不同的节点上使用单个实例获取锁的方式去获得锁,且每次获取锁都有超时时间,如果请求超时,则认为该节点不可用。当应用服务成功获取锁的 Redis 节点超过半数(N/2+1,N 为节点数) 时,并且获取锁消耗的实际时间不超过锁的过期时间,则获取锁成功。
一旦获取锁成功,就会重新计算释放锁的时间,该时间是由原来释放锁的时间减去获取锁所消耗的时间;而如果获取锁失败,客户端依然会释放获取锁成功的节点。
具体的代码实现如下:
- 首先引入 jar 包:
|
|
- 实现 Redisson 的配置文件:
|
|
- 获取锁操作:
|
|
总结
实现分布式锁的方式有很多,有最简单的数据库实现,还有 Zookeeper 多节点实现和缓存实现。我们可以分别对这三种实现方式进行性能压测,可以发现在同样的服务器配置下,Redis 的性能是最好的,Zookeeper 次之,数据库最差。
从实现方式和可靠性来说,Zookeeper 的实现方式简单,且基于分布式集群,可以避免单点问题,具有比较高的可靠性。因此,在对业务性能要求不是特别高的场景中,我建议使用 Zookeeper 实现的分布式锁。
思考题
我们知道 Redis 分布式锁在集群环境下会出现不同应用服务同时获得锁的可能,而 Redisson 中的 Redlock 算法很好地解决了这个问题。那 Redisson 实现的分布式锁是不是就一定不会出现同时获得锁的可能呢?
期待在留言区看到你的答案。也欢迎你点击“请朋友读”,把今天的内容分享给身边的朋友,邀请他一起讨论。
文章作者
上次更新 10100-01-10