第10讲__如何保证集合是线程安全的_ConcurrentHashMap如何实现高效地线程安全?
文章目录
我在之前两讲介绍了 Java 集合框架的典型容器类,它们绝大部分都不是线程安全的,仅有的线程安全实现,比如 Vector、Stack,在性能方面也远不尽如人意。幸好 Java 语言提供了并发包(java.util.concurrent),为高度并发需求提供了更加全面的工具支持。
今天我要问你的问题是,如何保证容器是线程安全的?ConcurrentHashMap 如何实现高效地线程安全?
典型回答
Java 提供了不同层面的线程安全支持。在传统集合框架内部,除了 Hashtable 等同步容器,还提供了所谓的同步包装器(Synchronized Wrapper),我们可以调用 Collections 工具类提供的包装方法,来获取一个同步的包装容器(如 Collections.synchronizedMap),但是它们都是利用非常粗粒度的同步方式,在高并发情况下,性能比较低下。
另外,更加普遍的选择是利用并发包提供的线程安全容器类,它提供了:
- 各种并发容器,比如 ConcurrentHashMap、CopyOnWriteArrayList。
- 各种线程安全队列(Queue/Deque),如 ArrayBlockingQueue、SynchronousQueue。
- 各种有序容器的线程安全版本等。
具体保证线程安全的方式,包括有从简单的 synchronize 方式,到基于更加精细化的,比如基于分离锁实现的 ConcurrentHashMap 等并发实现等。具体选择要看开发的场景需求,总体来说,并发包内提供的容器通用场景,远优于早期的简单同步实现。
考点分析
谈到线程安全和并发,可以说是 Java 面试中必考的考点,我上面给出的回答是一个相对宽泛的总结,而且 ConcurrentHashMap 等并发容器实现也在不断演进,不能一概而论。
如果要深入思考并回答这个问题及其扩展方面,至少需要:
- 理解基本的线程安全工具。
- 理解传统集合框架并发编程中 Map 存在的问题,清楚简单同步方式的不足。
- 梳理并发包内,尤其是 ConcurrentHashMap 采取了哪些方法来提高并发表现。
- 最好能够掌握 ConcurrentHashMap 自身的演进,目前的很多分析资料还是基于其早期版本。
今天我主要是延续专栏之前两讲的内容,重点解读经常被同时考察的 HashMap 和 ConcurrentHashMap。今天这一讲并不是对并发方面的全面梳理,毕竟这也不是专栏一讲可以介绍完整的,算是个开胃菜吧,类似 CAS 等更加底层的机制,后面会在 Java 进阶模块中的并发主题有更加系统的介绍。
知识扩展
1. 为什么需要 ConcurrentHashMap?
Hashtable 本身比较低效,因为它的实现基本就是将 put、get、size 等各种方法加上“synchronized”。简单来说,这就导致了所有并发操作都要竞争同一把锁,一个线程在进行同步操作时,其他线程只能等待,大大降低了并发操作的效率。
前面已经提过 HashMap 不是线程安全的,并发情况会导致类似 CPU 占用 100% 等一些问题,那么能不能利用 Collections 提供的同步包装器来解决问题呢?
看看下面的代码片段,我们发现同步包装器只是利用输入 Map 构造了另一个同步版本,所有操作虽然不再声明成为 synchronized 方法,但是还是利用了“this”作为互斥的 mutex,没有真正意义上的改进!
|
|
所以,Hashtable 或者同步包装版本,都只是适合在非高度并发的场景下。
2.ConcurrentHashMap 分析
我们再来看看 ConcurrentHashMap 是如何设计实现的,为什么它能大大提高并发效率。
首先,我这里强调,ConcurrentHashMap 的设计实现其实一直在演化,比如在 Java 8 中就发生了非常大的变化(Java 7 其实也有不少更新),所以,我这里将比较分析结构、实现机制等方面,对比不同版本的主要区别。
早期 ConcurrentHashMap,其实现是基于:
- 分离锁,也就是将内部进行分段(Segment),里面则是 HashEntry 的数组,和 HashMap 类似,哈希相同的条目也是以链表形式存放。
- HashEntry 内部使用 volatile 的 value 字段来保证可见性,也利用了不可变对象的机制以改进利用 Unsafe 提供的底层能力,比如 volatile access,去直接完成部分操作,以最优化性能,毕竟 Unsafe 中的很多操作都是 JVM intrinsic 优化过的。
你可以参考下面这个早期 ConcurrentHashMap 内部结构的示意图,其核心是利用分段设计,在进行并发操作的时候,只需要锁定相应段,这样就有效避免了类似 Hashtable 整体同步的问题,大大提高了性能。
在构造的时候,Segment 的数量由所谓的 concurrentcyLevel 决定,默认是 16,也可以在相应构造函数直接指定。注意,Java 需要它是 2 的幂数值,如果输入是类似 15 这种非幂值,会被自动调整到 16 之类 2 的幂数值。
具体情况,我们一起看看一些 Map 基本操作的源码,这是 JDK 7 比较新的 get 代码。针对具体的优化部分,为方便理解,我直接注释在代码段里,get 操作需要保证的是可见性,所以并没有什么同步逻辑。
|
|
而对于 put 操作,首先是通过二次哈希避免哈希冲突,然后以 Unsafe 调用方式,直接获取相应的 Segment,然后进行线程安全的 put 操作:
|
|
其核心逻辑实现在下面的内部方法中:
|
|
所以,从上面的源码清晰的看出,在进行并发写操作时:
- ConcurrentHashMap 会获取再入锁,以保证数据一致性,Segment 本身就是基于 ReentrantLock 的扩展实现,所以,在并发修改期间,相应 Segment 是被锁定的。
- 在最初阶段,进行重复性的扫描,以确定相应 key 值是否已经在数组里面,进而决定是更新还是放置操作,你可以在代码里看到相应的注释。重复扫描、检测冲突是 ConcurrentHashMap 的常见技巧。
- 我在专栏上一讲介绍 HashMap 时,提到了可能发生的扩容问题,在 ConcurrentHashMap 中同样存在。不过有一个明显区别,就是它进行的不是整体的扩容,而是单独对 Segment 进行扩容,细节就不介绍了。
另外一个 Map 的 size 方法同样需要关注,它的实现涉及分离锁的一个副作用。
试想,如果不进行同步,简单的计算所有 Segment 的总值,可能会因为并发 put,导致结果不准确,但是直接锁定所有 Segment 进行计算,就会变得非常昂贵。其实,分离锁也限制了 Map 的初始化等操作。
所以,ConcurrentHashMap 的实现是通过重试机制(RETRIES_BEFORE_LOCK,指定重试次数 2),来试图获得可靠值。如果没有监控到发生变化(通过对比 Segment.modCount),就直接返回,否则获取锁进行操作。
下面我来对比一下,在 Java 8 和之后的版本中,ConcurrentHashMap 发生了哪些变化呢?
- 总体结构上,它的内部存储变得和我在专栏上一讲介绍的 HashMap 结构非常相似,同样是大的桶(bucket)数组,然后内部也是一个个所谓的链表结构(bin),同步的粒度要更细致一些。
- 其内部仍然有 Segment 定义,但仅仅是为了保证序列化时的兼容性而已,不再有任何结构上的用处。
- 因为不再使用 Segment,初始化操作大大简化,修改为 lazy-load 形式,这样可以有效避免初始开销,解决了老版本很多人抱怨的这一点。
- 数据存储利用 volatile 来保证可见性。
- 使用 CAS 等操作,在特定场景进行无锁并发操作。
- 使用 Unsafe、LongAdder 之类底层手段,进行极端情况的优化。
先看看现在的数据存储内部实现,我们可以发现 Key 是 final 的,因为在生命周期中,一个条目的 Key 发生变化是不可能的;与此同时 val,则声明为 volatile,以保证可见性。
|
|
我这里就不再介绍 get 方法和构造函数了,相对比较简单,直接看并发的 put 是如何实现的。
|
|
初始化操作实现在 initTable 里面,这是一个典型的 CAS 使用场景,利用 volatile 的 sizeCtl 作为互斥手段:如果发现竞争性的初始化,就 spin 在那里,等待条件恢复;否则利用 CAS 设置排他标志。如果成功则进行初始化;否则重试。
请参考下面代码:
|
|
当 bin 为空时,同样是没有必要锁定,也是以 CAS 操作去放置。
你有没有注意到,在同步逻辑上,它使用的是 synchronized,而不是通常建议的 ReentrantLock 之类,这是为什么呢?现代 JDK 中,synchronized 已经被不断优化,可以不再过分担心性能差异,另外,相比于 ReentrantLock,它可以减少内存消耗,这是个非常大的优势。
与此同时,更多细节实现通过使用 Unsafe 进行了优化,例如 tabAt 就是直接利用 getObjectAcquire,避免间接调用的开销。
|
|
再看看,现在是如何实现 size 操作的。阅读代码你会发现,真正的逻辑是在 sumCount 方法中,那么 sumCount 做了什么呢?
|
|
我们发现,虽然思路仍然和以前类似,都是分而治之的进行计数,然后求和处理,但实现却基于一个奇怪的 CounterCell。难道它的数值,就更加准确吗?数据一致性是怎么保证的?
|
|
其实,对于 CounterCell 的操作,是基于 java.util.concurrent.atomic.LongAdder 进行的,是一种 JVM 利用空间换取更高效率的方法,利用了Striped64内部的复杂逻辑。这个东西非常小众,大多数情况下,建议还是使用 AtomicLong,足以满足绝大部分应用的性能需求。
今天我从线程安全问题开始,概念性的总结了基本容器工具,分析了早期同步容器的问题,进而分析了 Java 7 和 Java 8 中 ConcurrentHashMap 是如何设计实现的,希望 ConcurrentHashMap 的并发技巧对你在日常开发可以有所帮助。
一课一练
关于今天我们讨论的题目你做到心中有数了吗?留一个道思考题给你,在产品代码中,有没有典型的场景需要使用类似 ConcurrentHashMap 这样的并发容器呢?
请你在留言区写写你对这个问题的思考,我会选出经过认真思考的留言,送给你一份学习鼓励金,欢迎你与我一起讨论。
你的朋友是不是也在准备面试呢?你可以“请朋友读”,把今天的题目分享给好友,或许你能帮到他。
文章作者
上次更新 10100-01-10