07__条件语句:WHERE_与_HAVING有什么不同_
文章目录
你好,我是朱晓峰。
我们在进行查询的时候,经常需要按条件对查询结果进行筛选,这就要用到条件语句 WHERE 和 HAVING 了。
WHERE 是直接对表中的字段进行限定,来筛选结果;HAVING 则需要跟分组关键字 GROUP BY 一起使用,通过对分组字段或分组计算函数进行限定,来筛选结果。虽然它们都是对查询进行限定,却有着各自的特点和适用场景。很多时候,我们会遇到 2 个都可以用的情况。一旦用错,就很容易出现执行效率低下、查询结果错误,甚至是查询无法运行的情况。
下面我就借助项目实施过程中的实际需求,给你讲讲 WHERE 和 HAVING 分别是如何对查询结果进行筛选的,以及它们各自的优缺点,来帮助你正确地使用它们,使你的查询不仅能够得到正确的结果,还能占用更少的资源,并且速度更快。
一个实际查询需求
超市的经营者提出,要查单笔销售金额超过 50 元的商品。我们来分析一下这个需求:需要查询出一个商品记录集,限定条件是单笔销售金额超过 50 元。这个时候,我们就需要用到 WHERE 和 HAVING 了。
这个问题的条件很明确,查询的结果也只有“商品”一个字段,好像很容易实现。
假设我们有一个这样的商品信息表(demo.goodsmaster),里面有 2 种商品:书和笔。
mysql> SELECT *
-> FROM demo.goodsmaster;
+————+———+———–+—————+——+————+
| itemnumber | barcode | goodsname | specification | unit | salesprice |
+————+———+———–+—————+——+————+
| 1 | 0001 | 书 | | 本 | 89.00 |
| 2 | 0002 | 笔 | | 支 | 5.00 |
+————+———+———–+—————+——+————+
2 rows in set (0.00 sec)
同时,我们还有一个商品销售明细表(demo.transactiondetails),里面有 4 条销售记录:
mysql> SELECT *
-> FROM demo.transactiondetails;
+—————+————+———-+——-+————+
| transactionid | itemnumber | quantity | price | salesvalue |
+—————+————+———-+——-+————+
| 1 | 1 | 1.000 | 89.00 | 89.00 |
| 1 | 2 | 2.000 | 5.00 | 10.00 |
| 2 | 1 | 2.000 | 89.00 | 178.00 |
| 3 | 2 | 10.000 | 5.00 | 50.00 |
+—————+————+———-+——-+————+
4 rows in set (0.01 sec)
接下来,我们分别用 WHERE 和 HAVING 进行查询,看看它们各自是如何查询的,是否能够得到正确的结果。
第一步,用 WHERE 关键字进行查询:
mysql> SELECT DISTINCT b.goodsname
-> FROM demo.transactiondetails AS a
-> JOIN demo.goodsmaster AS b
-> ON (a.itemnumber=b.itemnumber)
-> WHERE a.salesvalue > 50;
+———–+
| goodsname |
+———–+
| 书 |
+———–+
1 row in set (0.00 sec)
第二步,用 HAVING 关键字进行查询:
mysql> SELECT b.goodsname
-> FROM demo.transactiondetails AS a
-> JOIN demo.goodsmaster AS b
-> ON (a.itemnumber=b.itemnumber)
-> GROUP BY b.goodsname
-> HAVING max(a.salesvalue)>50;
+———–+
| goodsname |
+———–+
| 书 |
+———–+
1 row in set (0.00 sec)
可以发现,两次查询的结果是一样的。那么,这两种查询到底有什么区别,哪个更好呢?要弄明白这个问题,我们要先学习下 WHERE 和 HAVING 的执行过程。
WHERE
我们先来分析一下刚才使用 WHERE 条件的查询语句,来看看 MySQL 是如何执行这个查询的。
首先,MySQL 从数据表 demo.transactiondetails 中抽取满足条件“a.salesvalue>50”的记录:
mysql> SELECT *
-> FROM demo.transactiondetails AS a
-> WHERE a.salesvalue > 50;
+—————+————+———-+——-+————+
| transactionid | itemnumber | quantity | price | salesvalue |
+—————+————+———-+——-+————+
| 1 | 1 | 1.000 | 89.00 | 89.00 |
| 2 | 1 | 2.000 | 89.00 | 178.00 |
+—————+————+———-+——-+————+
2 rows in set (0.00 sec)
为了获取到销售信息所对应的商品名称,我们需要通过公共字段“itemnumber”与数据表 demo.goodsmaster 进行关联,从 demo.goodsmaster 中获取商品名称:
mysql> SELECT
-> a.*, b.goodsname
-> FROM
-> demo.transactiondetails a
-> JOIN
-> demo.goodsmaster b ON (a.itemnumber = b.itemnumber)
-> WHERE
-> a.salesvalue > 50;
+—————+————+———-+——-+————+———–+
| transactionid | itemnumber | quantity | price | salesvalue | goodsname |
+—————+————+———-+——-+————+———–+
| 1 | 1 | 1.000 | 89.00 | 89.00 | 书 |
| 2 | 1 | 2.000 | 89.00 | 178.00 | 书 |
+—————+————+———-+——-+————+———–+
2 rows in set (0.00 sec)
这个时候,如果查询商品名称,就会出现两个重复的记录:
mysql> SELECT
-> b.goodsname
-> FROM
-> demo.transactiondetails AS a
-> JOIN
-> demo.goodsmaster AS b ON (a.itemnumber = b.itemnumber)
-> WHERE
-> a.salesvalue > 50;
+———–+
| goodsname |
+———–+
| 书 |
| 书 |
+———–+
2 rows in set (0.00 sec)
需要注意的是,为了消除重复的语句,这里我们需要用到一个关键字:DISTINCT,它的作用是返回唯一不同的值。比如,DISTINCT 字段 1,就表示返回所有字段 1 的不同的值。
下面我们尝试一下加上 DISTINCT 关键字的查询:
mysql> SELECT
-> DISTINCT(b.goodsname) – 返回唯一不同的值
-> FROM
-> demo.transactiondetails AS a
-> JOIN
-> demo.goodsmaster AS b ON (a.itemnumber = b.itemnumber)
-> WHERE
-> a.salesvalue > 50;
+———–+
| goodsname |
+———–+
| 书 |
+———–+
1 row in set (0.00 sec)
这样,我们就得到了需要的结果:单笔销售金额超过 50 元的商品就是“书”。
总之,WHERE 关键字的特点是,直接用表的字段对数据集进行筛选。如果需要通过关联查询从其他的表获取需要的信息,那么执行的时候,也是先通过 WHERE 条件进行筛选,用筛选后的比较小的数据集进行连接。这样一来,连接过程中占用的资源比较少,执行效率也比较高。
HAVING
讲完了 WHERE,我们再说说 HAVING 是如何执行的。不过,在这之前,我要先给你介绍一下 GROUP BY,因为 HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。
我们可以把 GROUP BY 理解成对数据进行分组,方便我们对组内的数据进行统计计算。
下面我举个小例子,具体讲一讲 GROUP BY 如何使用,以及如何在分组里面进行统计计算。
假设现在有一组销售数据,我们需要从里面查询每天、每个收银员的销售数量和销售金额。我们通过下面的代码,来查看一下数据的内容:
mysql> SELECT *
-> FROM demo.transactionhead;
+—————+——————+————+———————+
| transactionid | transactionno | operatorid | transdate |
+—————+——————+————+———————+
| 1 | 0120201201000001 | 1 | 2020-12-10 00:00:00 |
| 2 | 0120201202000001 | 2 | 2020-12-11 00:00:00 |
| 3 | 0120201202000002 | 2 | 2020-12-12 00:00:00 |
+—————+——————+————+———————+
3 rows in set (0.00 sec)
mysql> SELECT *
-> FROM demo.transactiondetails;
+—————+————+———-+——-+————+
| transactionid | itemnumber | quantity | price | salesvalue |
+—————+————+———-+——-+————+
| 1 | 1 | 1.000 | 89.00 | 89.00 |
| 1 | 2 | 2.000 | 5.00 | 10.00 |
| 2 | 1 | 2.000 | 89.00 | 178.00 |
| 3 | 2 | 10.000 | 5.00 | 50.00 |
+—————+————+———-+——-+————+
4 rows in set (0.01 sec)
mysql> SELECT *
-> FROM demo.operator;
+————+———-+——–+————–+————-+———+——————–+——–+
| operatorid | branchid | workno | operatorname | phone | address | pid | duty |
+————+———-+——–+————–+————-+———+——————–+——–+
| 1 | 1 | 001 | 张静 | 18612345678 | 北京 | 110392197501012332 | 店长 |
| 2 | 1 | 002 | 李强 | 13312345678 | 北京 | 110222199501012332 | 收银员 |
+————+———-+——–+————–+————-+———+——————–+——–+
2 rows in set (0.01 sec)
mysql> SELECT
-> a.transdate, – 交易时间
-> c.operatorname,– 操作员
-> d.goodsname, – 商品名称
-> b.quantity, – 销售数量
-> b.price, – 价格
-> b.salesvalue – 销售金额
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> JOIN
-> demo.operator AS c ON (a.operatorid = c.operatorid)
-> JOIN
-> demo.goodsmaster AS d ON (b.itemnumber = d.itemnumber);
+———————+————–+———–+———-+——-+————+
| transdate | operatorname | goodsname | quantity | price | salesvalue |
+———————+————–+———–+———-+——-+————+
| 2020-12-10 00:00:00 | 张静 | 书 | 1.000 | 89.00 | 89.00 |
| 2020-12-10 00:00:00 | 张静 | 笔 | 2.000 | 5.00 | 10.00 |
| 2020-12-11 00:00:00 | 李强 | 书 | 2.000 | 89.00 | 178.00 |
| 2020-12-12 00:00:00 | 李强 | 笔 | 10.000 | 5.00 | 50.00 |
+———————+————–+———–+———-+——-+————+
4 rows in set (0.00 sec)
如果我想看看每天的销售数量和销售金额,可以按照一个字段“transdate”对数据进行分组和统计:
mysql> SELECT
-> a.transdate,
-> SUM(b.quantity), – 统计分组的总计销售数量
-> SUM(b.salesvalue) – 统计分组的总计销售金额
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> GROUP BY a.transdate;
+———————+—————–+——————-+
| transdate | SUM(b.quantity) | SUM(b.salesvalue) |
+———————+—————–+——————-+
| 2020-12-10 00:00:00 | 3.000 | 99.00 |
| 2020-12-11 00:00:00 | 2.000 | 178.00 |
| 2020-12-12 00:00:00 | 10.000 | 50.00 |
+———————+—————–+——————-+
3 rows in set (0.00 sec)
如果我想看每天、每个收银员的销售数量和销售金额,就可以按 2 个字段进行分组和统计,分别是“transdate”和“operatorname”:
mysql> SELECT
-> a.transdate,
-> c.operatorname,
-> SUM(b.quantity), – 数量求和
-> SUM(b.salesvalue)– 金额求和
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> JOIN
-> demo.operator AS C ON (a.operatorid = c.operatorid)
-> GROUP BY a.transdate , c.operatorname; – 按照交易日期和操作员分组
+———————+————–+—————–+——————-+
| transdate | operatorname | SUM(b.quantity) | SUM(b.salesvalue) |
+———————+————–+—————–+——————-+
| 2020-12-10 00:00:00 | 张静 | 3.000 | 99.00 |
| 2020-12-11 00:00:00 | 李强 | 2.000 | 178.00 |
| 2020-12-12 00:00:00 | 李强 | 10.000 | 50.00 |
+———————+————–+—————–+——————-+
3 rows in set (0.00 sec)
可以看到,通过对销售数据按照交易日期和收银员进行分组,再对组内数据进行求和统计,就实现了对每天、每个收银员的销售数量和销售金额的查询。
好了,知道了 GROUP BY 的使用方法,我们就来学习下 HAVING。
回到开头的超市经营者的需求:查询单笔销售金额超过 50 元的商品。现在我们来使用 HAVING 来实现,代码如下:
mysql> SELECT b.goodsname
-> FROM demo.transactiondetails AS a
-> JOIN demo.goodsmaster AS b
-> ON (a.itemnumber=b.itemnumber)
-> GROUP BY b.goodsname
-> HAVING max(a.salesvalue)>50;
+———–+
| goodsname |
+———–+
| 书 |
+———–+
1 row in set (0.00 sec)
这种查询方式在 MySQL 里面是分四步实现的。
第一步,把流水明细表和商品信息表通过公共字段“itemnumber”连接起来,从 2 个表中获取数据:
mysql> SELECT
-> a., b.
-> FROM
-> demo.transactiondetails a
-> JOIN
-> demo.goodsmaster b ON (a.itemnumber = b.itemnumber);
+—————+————+———-+——-+————+————+———+———–+—————+——+————+
| transactionid | itemnumber | quantity | price | salesvalue | itemnumber | barcode | goodsname | specification | unit | salesprice |
+—————+————+———-+——-+————+————+———+———–+—————+——+————+
| 1 | 1 | 1.000 | 89.00 | 89.00 | 1 | 0001 | 书 | NULL | 本 | 89.00 |
| 1 | 2 | 2.000 | 5.00 | 10.00 | 2 | 0002 | 笔 | NULL | 支 | 5.00 |
| 2 | 1 | 2.000 | 89.00 | 178.00 | 1 | 0001 | 书 | NULL | 本 | 89.00 |
| 3 | 2 | 10.000 | 5.00 | 50.00 | 2 | 0002 | 笔 | NULL | 支 | 5.00 |
+—————+————+———-+——-+————+————+———+———–+—————+——+————+
4 rows in set (0.00 sec)
查询的结果有点复杂,为了方便你理解,我对结果进行了分类,并加了注释,如下图所示:
第二步,把结果集按照商品名称分组,分组的示意图如下所示:
组 1:
组 2:
第三步,对分组后的数据集进行筛选,把组中字段“salesvalue”的最大值 >50 的组筛选出来。筛选后的结果集如下所示:
第四步,返回商品名称。这时,我们就得到了需要的结果:单笔销售金额超过 50 元的商品就是“书”。
现在我们来简单小结下使用 HAVING 的查询过程。首先,我们要把所有的信息都准备好,包括从关联表中获取需要的信息,对数据集进行分组,形成一个包含所有需要的信息的数据集合。接着,再通过 HAVING 条件的筛选,得到需要的数据。
怎么正确地使用 WHERE 和 HAVING?
现在,你已经知道了 WHERE 和 HAVING 的具体使用方法。那么,在查询时,我们怎样才能正确地使用它们呢?
首先,你要知道它们的 2 个典型区别。
第一个区别是,如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。
这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也就比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。
第二个区别是,WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。
这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。
这么说你可能不太好理解,我来举个小例子。假如超市经营者提出,要查询一下是哪个收银员、在哪天卖了 2 单商品。这种必须先分组才能筛选的查询,用 WHERE 语句实现就比较难,我们可能要分好几步,通过把中间结果存储起来,才能搞定。但是用 HAVING,则很轻松,代码如下:
mysql> SELECT
-> a.transdate, c.operatorname
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> JOIN
-> demo.operator AS c ON (a.operatorid = c.operatorid)
-> GROUP BY a.transdate,c.operatorname
-> HAVING count(*)=2; – 销售了 2 单
+———————+————–+
| transdate | operatorname |
+———————+————–+
| 2020-12-10 00:00:00 | 张静 |
+———————+————–+
1 row in set (0.01 sec)
我汇总了 WHERE 和 HAVING 各自的优缺点,如下图所示:
不过,需要注意的是,WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。
举个例子,假设现在我们有一组销售数据,包括交易时间、收银员、商品名称、销售数量、价格和销售金额等信息,超市的经营者要查询“2020-12-10”和“2020-12-11”这两天收银金额超过 100 元的销售日期、收银员名称、销售数量和销售金额。
mysql> SELECT
-> a.transdate,
-> c.operatorname,
-> d.goodsname,
-> b.quantity,
-> b.price,
-> b.salesvalue
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> JOIN
-> demo.operator AS c ON (a.operatorid = c.operatorid)
-> JOIN
-> demo.goodsmaster as d on (b.itemnumber=d.itemnumber);
+———————+————–+———–+———-+——-+————+
| transdate | operatorname | goodsname | quantity | price | salesvalue |
+———————+————–+———–+———-+——-+————+
| 2020-12-10 00:00:00 | 张静 | 书 | 1.000 | 89.00 | 89.00 |
| 2020-12-10 00:00:00 | 张静 | 笔 | 2.000 | 5.00 | 10.00 |
| 2020-12-11 00:00:00 | 李强 | 书 | 2.000 | 89.00 | 178.00 |
| 2020-12-12 00:00:00 | 李强 | 笔 | 10.000 | 5.00 | 50.00 |
+———————+————–+———–+———-+——-+————+
4 rows in set (0.00 sec)
我们来分析一下这个需求:由于是要按照销售日期和收银员进行统计,所以,必须按照销售日期和收银员进行分组,因此,我们可以通过使用 GROUP BY 和 HAVING 进行查询:
mysql> SELECT
-> a.transdate,
-> c.operatorname,
-> SUM(b.quantity), – 销售数量求和
-> SUM(b.salesvalue)– 销售金额求和
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> JOIN
-> demo.operator AS c ON (a.operatorid = c.operatorid)
-> GROUP BY a.transdate , operatorname – 按照日期、收银员分组
-> HAVING a.transdate IN (‘2020-12-10’ , ‘2020-12-11’)
-> AND SUM(b.salesvalue) > 100; – 最后筛选数据
+———————+————–+—————–+——————-+
| transdate | operatorname | SUM(b.quantity) | SUM(b.salesvalue) |
+———————+————–+—————–+——————-+
| 2020-12-11 00:00:00 | 李强 | 2.000 | 178.00 |
+———————+————–+—————–+——————-+
1 row in set (0.00 sec)
如果你仔细看 HAVING 后面的筛选条件,就会发现,条件 a.transdate IN (‘2020-12-10’ , ‘2020-12-11’),其实可以用 WHERE 来限定。我们把查询改一下试试:
mysql> SELECT
-> a.transdate,
-> c.operatorname,
-> SUM(b.quantity),
-> SUM(b.salesvalue)
-> FROM
-> demo.transactionhead AS a
-> JOIN
-> demo.transactiondetails AS b ON (a.transactionid = b.transactionid)
-> JOIN
-> demo.operator AS c ON (a.operatorid = c.operatorid)
-> WHERE a.transdate in (‘2020-12-12’,‘2020-12-11’) – 先按日期筛选
-> GROUP BY a.transdate , operatorname
-> HAVING SUM(b.salesvalue)>100; – 后按金额筛选
+———————+————–+—————–+——————-+
| transdate | operatorname | SUM(b.quantity) | SUM(b.salesvalue) |
+———————+————–+—————–+——————-+
| 2020-12-11 00:00:00 | 李强 | 2.000 | 178.00 |
+———————+————–+—————–+——————-+
1 row in set (0.00 sec)
很显然,我们同样得到了需要的结果。这是因为我们把条件拆分开,包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。
总结
今天,我给你介绍了条件语句 WHERE 和 HAVING 在 MySQL 中的执行原理。WHERE 可以先按照条件对数据进行筛选,然后进行数据连接,所以效率更高。HAVING 可以在分组之后,通过使用分组中的计算函数,实现 WHERE 难以完成的数据筛选。
了解了 WHERE 和 HAVING 各自的特点,我们就可以在查询中,充分利用它们的优势,更高效地实现我们的查询目标。
最后,我想提醒你的是,很多人刚开始学习 MySQL 的时候,不太喜欢用 HAVING,一提到条件语句,就想当然地用 WHERE。其实,HAVING 是非常有用的,特别是在做一些复杂的统计查询的时候,经常要用到分组,这个时候 HAVING 就派上用场了。
当然,你也可以不用 HAVING,而是把查询分成几步,把中间结果存起来,再用 WHERE 筛选,或者干脆把这部分筛选功能放在应用层面,用代码来实现。但是,这样做的效率很低,而且会增加工作量,加大维护成本。所以,学会使用 HAVING,对你完成复杂的查询任务非常有帮助。
思考题
有这样一种说法:HAVING 后面的条件,必须是包含分组中的计算函数的条件,你觉得对吗?为什么?
欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享你的朋友或同事,我们下节课见。
文章作者
上次更新 10100-01-10