43__灵活实现动态限流限速,其实没有那么难
文章目录
你好,我是温铭。
前面的课程中,我为你介绍了漏桶和令牌桶算法,它们都是应对突发流量的常用手段。同时,我们也学习了如何通过 Nginx 配置文件的方式,来实现对请求的限流限速。不过很显然,使用 Nginx 配置文件的方式,仅仅停留在可用的层面,距离好用还是有不小的距离的。
第一个问题便是,限速的 key 被限制在 Nginx 的变量范围内,不能灵活地设置。比如,根据不同的省份和不同的客户端渠道,来设置不同的限速阈值,这种常见的需求用 Nginx 就没有办法实现。
另外一个更大的问题是,不能动态地调整速率,每次修改都需要重载 Nginx 服务,这一点我们在上节课的最后也提到过。这样一来,根据不同的时间段限速这种需求,就只能通过外置的脚本来蹩脚地实现了。
要知道,技术是为业务服务的,同时,业务也在驱动着技术的进步。在 Nginx 诞生的时代,并没有什么动态调整配置的需求,更多的是反向代理、负载均衡、低内存占用等类似的需求,在驱动着 Nginx 的成长。在技术的架构和实现上,并没有人能够预料到,在移动互联网、IoT、微服务等场景下,对于动态和精细控制的需求会大量爆发。
而 OpenResty 使用 Lua 脚本的方式,恰好能够弥补 Nginx 在这方面的缺失,形成了有效的互补。这也是 OpenResty 被广泛地用于替换 Nginx 的根源所在。在后面几节课中,我会为你继续介绍更多 OpenResty 中动态的场景和示例。今天,就让我们先来看下,如何使用 OpenResty 来实现动态限流和限速。
在 OpenResty 中,我们推荐使用 lua-resty-limit-traffic 来做流量的限制。它里面包含了 limit-req
(限制请求速率)、 limit-count
(限制请求数)和 limit-conn
(限制并发连接数)这三种不同的限制方式;并且提供了limit.traffic
,可以把这三种方式进行聚合使用。
限制请求速率
让我们先来看下 limit-req
,它使用的是漏桶算法来限制请求的速率。
在上一节中,我们已经简要介绍了这个 resty 库中漏桶算法的关键实现代码,现在我们就来学习如何使用这个库。我们来看下面这段示例代码:
|
|
我们知道,lua-resty-limit-traffic
是使用共享字典来对 key 进行保存和计数的,所以在使用 limit-req
前,我们需要先声明 my_limit_req_store
这个 100m 的空间。这一点对于 limit-conn
和 limit-count
也是类似的,它们都需要自己单独的共享字典空间,以便区分开。
|
|
上面这行代码,便是其中最关键的一行代码。它的含义,是使用名为 my_limit_req_store
的共享字典来存放统计数据,并把每秒的速率设置为 200。这样,如果超过 200 但小于 300(这个值是 200 + 100 计算得到的)的话,就需要排队等候;如果超过 300 的话,就会直接拒绝。
在设置完成后,我们就要对终端的请求进行处理了,lim: incoming("key", true)
就是来做这件事情的。incoming
这个函数有两个参数,我们需要详细解读一下。
第一个参数,是用户指定的限速的 key。在上面的示例中它是一个字符串常量,这就意味着要对所有终端都统一限速。如果要实现根据不同省份和渠道来限速,其实也很简单,把这两个信息都作为 key 即可,下面是实现这一需求的伪代码:
|
|
当然,你也可以举一反三,自定义 key 的含义以及调用 incoming
的条件,这样你就能收到非常灵活的限流限速效果了。
我们再来看incoming
函数的第二个参数,它是一个布尔值,默认是 false,意味着这个请求不会被记录到共享字典中做统计,这只是一次 演习
。如果设置为 true,就会产生实际的效果了。因此,在大多数情况下,你都需要显式地把它设置为 true。
你可能会纳闷儿,为什么会有这个参数的存在呢?我们不妨考虑一下这样的一个场景,你设置了两个不同的 limit-req
实例,针对不同的 key,一个 key 是主机名,另外一个 key 是客户端的 IP 地址。那么,当一个终端请求被处理的时候,会按照先后顺序调用这两个实例的 incoming
方法,就像下面这段伪码表示的一样:
|
|
如果用户的请求通过了 limiter_one
的阈值检测,但被 limiter_two
的检测拒绝,那么 limiter_one:incoming
这次函数调用就应该被认为是一次 演习
,不应该真的去计数。
这样一来,上述的代码逻辑就不够严谨了。我们需要事先对所有的 limiter 做一次演习,如果有 limiter 的阈值被触发,可以 rejected 终端请求,就可以直接返回:
|
|
这其实就是 incoming
函数第二个参数的意义所在。刚刚这段代码就是 limit.traffic
模块最核心的一段代码,专门用作多个限流器的组合所用。
限制请求数
再来看下 limit.count
这个限制请求数的库,它的效果和 GitHub API 的 Rate Limiting 一样,可以限制固定时间窗口内有多少次用户请求。老规矩,我们先来看一段示例代码:
|
|
你可以看到,limit.count
和 limit.req
的使用方法是类似的,我们先在 Nginx.conf 中定义一个字典:
|
|
然后 new
一个 limiter 对象,最后用 incoming
函数来判断和处理。
不过,不同的是,limit-count
中的incoming
函数的第二个返回值,代表着还剩余的调用次数,我们可以据此在响应头中增加字段,给终端更好的提示:
|
|
限制并发连接数
第三种方式,也就是limit.conn
,是用来限制并发连接数的库。它和前面提到的两个库有所不同,有一个特别的 leaving
API,这里我来简单介绍下。
前面所讲的限制请求速率和限制请求数,都是可以直接在 access 这一个阶段内完成的。而限制并发连接数则不同,它不仅需要在 access 阶段判断是否超过阈值,而且需要在 log 阶段调用 leaving
接口:
|
|
不过,这个接口的核心代码其实也很简单,也就是下面这一行代码,实际上就是把连接数减一的操作。如果你没有在 log 阶段做这个清理的动作,那么连接数就会一直上涨,很快就会达到并发的阈值。
|
|
限速器的组合
到这里,这三种方式我们就分别介绍完了。最后,我们再来看看,怎么把 limit.rate
、limit.conn
和 limit.count
组合起来使用。这就需要用到 limit.traffic
中的 combine
函数了:
|
|
有了刚刚的知识基础,这段代码你应该很容易看明白。combine
函数的核心代码,在我们上面分析 limit.rate
的时候已经提到了一部分,它主要是借助了演习功能和 uncommit 函数来实现。这样组合以后,你就可以为多个限流器设置不同的阈值和 key,实现更复杂的业务需求了。
写在最后
limit.traffic
不仅支持今天所讲的这三种限速器,实际上,只要某个限速器有 incoming
和 uncommit
接口,都可以被 limit.traffic
的 combine
函数管理。
最后,给你留一个作业题。你可以写一个例子,把之前我们介绍过的基于令牌桶的限速器组合起来吗?欢迎在留言区写下你的答案与我讨论,也欢迎你把这篇文章分享给你的同事朋友,一起学习和交流。
文章作者
上次更新 10100-01-10