20深入理解迭代器和生成器
文章目录
19 | 深入理解迭代器和生成器
你好,我是景霄。
在第一次接触 Python 的时候,你可能写过类似 for i in [2, 3, 5, 7, 11, 13]: print(i) 这样的语句。for in 语句理解起来很直观形象,比起 C++ 和 java 早期的 for (int i = 0; i < n; i ++) printf("%d\n", a[i]) 这样的语句,不知道简洁清晰到哪里去了。
但是,你想过 Python 在处理 for in 语句的时候,具体发生了什么吗?什么样的对象可以被 for in 来枚举呢?
这一节课,我们深入到 Python 的容器类型实现底层去走走,了解一种叫做迭代器和生成器的东西。
你肯定用过的容器、可迭代对象和迭代器
容器这个概念非常好理解。我们说过,在 Python 中一切皆对象,对象的抽象就是类,而对象的集合就是容器。
列表(list: [0, 1, 2]),元组(tuple: (0, 1, 2)),字典(dict: {0:0, 1:1, 2:2}),集合(set: set([0, 1, 2]))都是容器。对于容器,你可以很直观地想象成多个元素在一起的单元;而不同容器的区别,正是在于内部数据结构的实现方法。然后,你就可以针对不同场景,选择不同时间和空间复杂度的容器。
所有的容器都是可迭代的(iterable)。这里的迭代,和枚举不完全一样。迭代可以想象成是你去买苹果,卖家并不告诉你他有多少库存。这样,每次你都需要告诉卖家,你要一个苹果,然后卖家采取行为:要么给你拿一个苹果;要么告诉你,苹果已经卖完了。你并不需要知道,卖家在仓库是怎么摆放苹果的。
严谨地说,迭代器(iterator)提供了一个 next 的方法。调用这个方法后,你要么得到这个容器的下一个对象,要么得到一个 StopIteration 的错误(苹果卖完了)。你不需要像列表一样指定元素的索引,因为字典和集合这样的容器并没有索引一说。比如,字典采用哈希表实现,那么你就只需要知道,next 函数可以不重复不遗漏地一个一个拿到所有元素即可。
而可迭代对象,通过 iter() 函数返回一个迭代器,再通过 next() 函数就可以实现遍历。for in 语句将这个过程隐式化,所以,你只需要知道它大概做了什么就行了。
我们来看下面这段代码,主要向你展示怎么判断一个对象是否可迭代。当然,这还有另一种做法,是 isinstance(obj, Iterable)。
|
|
通过这段代码,你就可以知道,给出的类型中,除了数字 1234 之外,其它的数据类型都是可迭代的。
生成器,又是什么?
据我所知,很多人对生成器这个概念会比较陌生,因为生成器在很多常用语言中,并没有相对应的模型。
这里,你只需要记着一点:生成器是懒人版本的迭代器。
我们知道,在迭代器中,如果我们想要枚举它的元素,这些元素需要事先生成。这里,我们先来看下面这个简单的样例。
|
|
def test_iterator(): show_memory_info(‘initing iterator’) list_1 = [i for i in range(100000000)] show_memory_info(‘after iterator initiated’) print(sum(list_1)) show_memory_info(‘after sum called’)
def test_generator(): show_memory_info(‘initing generator’) list_2 = (i for i in range(100000000)) show_memory_info(‘after generator initiated’) print(sum(list_2)) show_memory_info(‘after sum called’)
%time test_iterator() %time test_generator()
########## 输出 ##########
initing iterator memory used: 48.9765625 MB after iterator initiated memory used: 3920.30078125 MB 4999999950000000 after sum called memory used: 3920.3046875 MB Wall time: 17 s initing generator memory used: 50.359375 MB after generator initiated memory used: 50.359375 MB 4999999950000000 after sum called memory used: 50.109375 MB Wall time: 12.5 s
|
|
def generator(k): i = 1 while True: yield i ** k i += 1
gen_1 = generator(1) gen_3 = generator(3) print(gen_1) print(gen_3)
def get_sum(n): sum_1, sum_3 = 0, 0 for i in range(n): next_1 = next(gen_1) next_3 = next(gen_3) print(’next_1 = {}, next_3 = {}’.format(next_1, next_3)) sum_1 += next_1 sum_3 += next_3 print(sum_1 * sum_1, sum_3)
get_sum(8)
########## 输出 ##########
<generator object generator at 0x000001E70651C4F8> <generator object generator at 0x000001E70651C390> next_1 = 1, next_3 = 1 next_1 = 2, next_3 = 8 next_1 = 3, next_3 = 27 next_1 = 4, next_3 = 64 next_1 = 5, next_3 = 125 next_1 = 6, next_3 = 216 next_1 = 7, next_3 = 343 next_1 = 8, next_3 = 512 1296 1296
|
|
def index_normal(L, target): result = [] for i, num in enumerate(L): if num == target: result.append(i) return result
print(index_normal([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2))
########## 输出 ##########
[2, 5, 9]
|
|
def index_generator(L, target): for i, num in enumerate(L): if num == target: yield i
print(list(index_generator([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2)))
########## 输出 ##########
[2, 5, 9]
|
|
def is_subsequence(a, b): b = iter(b) return all(i in b for i in a)
print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5])) print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))
########## 输出 ##########
True False
|
|
def is_subsequence(a, b): b = iter(b) print(b)
gen = (i for i in a) print(gen)
for i in gen: print(i)
gen = ((i in b) for i in a) print(gen)
for i in gen: print(i)
return all(((i in b) for i in a))
print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5])) print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))
########## 输出 ##########
<list_iterator object at 0x000001E7063D0E80>
<generator object is_subsequence.
|
|
while True: val = next(b) if val == i: yield True
|
|
b = (i for i in range(5))
print(2 in b) print(4 in b) print(3 in b)
########## 输出 ##########
True True False
|
|
文章作者
上次更新 10100-01-10