你好,我是张磊。今天我和你分享的主题是:让日志无处可逃之容器日志收集与管理。

在前面的文章中,我为你详细讲解了 Kubernetes 的核心监控体系和自定义监控体系的设计与实现思路。而在本篇文章里,我就来为你详细介绍一下 Kubernetes 里关于容器日志的处理方式。

首先需要明确的是,Kubernetes 里面对容器日志的处理方式,都叫作 cluster-level-logging,即:这个日志处理系统,与容器、Pod 以及 Node 的生命周期都是完全无关的。这种设计当然是为了保证,无论是容器挂了、Pod 被删除,甚至节点宕机的时候,应用的日志依然可以被正常获取到。

而对于一个容器来说,当应用把日志输出到 stdout 和 stderr 之后,容器项目在默认情况下就会把这些日志输出到宿主机上的一个 JSON 文件里。这样,你通过 kubectl logs 命令就可以看到这些容器的日志了。

上述机制,就是我们今天要讲解的容器日志收集的基础假设。而如果你的应用是把文件输出到其他地方,比如直接输出到了容器里的某个文件里,或者输出到了远程存储里,那就属于特殊情况了。当然,我在文章里也会对这些特殊情况的处理方法进行讲述。

而 Kubernetes 本身,实际上是不会为你做容器日志收集工作的,所以为了实现上述 cluster-level-logging,你需要在部署集群的时候,提前对具体的日志方案进行规划。而 Kubernetes 项目本身,主要为你推荐了三种日志方案。

**第一种,在 Node 上部署 logging agent,将日志文件转发到后端存储里保存起来。**这个方案的架构图如下所示。

不难看到,这里的核心就在于 logging agent,它一般都会以 DaemonSet 的方式运行在节点上,然后将宿主机上的容器日志目录挂载进去,最后由 logging-agent 把日志转发出去。

举个例子,我们可以通过 Fluentd 项目作为宿主机上的 logging-agent,然后把日志转发到远端的 ElasticSearch 里保存起来供将来进行检索。具体的操作过程,你可以通过阅读这篇文档来了解。另外,在很多 Kubernetes 的部署里,会自动为你启用 logrotate,在日志文件超过 10MB 的时候自动对日志文件进行 rotate 操作。

可以看到,在 Node 上部署 logging agent 最大的优点,在于一个节点只需要部署一个 agent,并且不会对应用和 Pod 有任何侵入性。所以,这个方案,在社区里是最常用的一种。

但是也不难看到,这种方案的不足之处就在于,它要求应用输出的日志,都必须是直接输出到容器的 stdout 和 stderr 里。

所以,**Kubernetes 容器日志方案的第二种,就是对这种特殊情况的一个处理,即:当容器的日志只能输出到某些文件里的时候,我们可以通过一个 sidecar 容器把这些日志文件重新输出到 sidecar 的 stdout 和 stderr 上,这样就能够继续使用第一种方案了。**这个方案的具体工作原理,如下所示。


比如,现在我的应用 Pod 只有一个容器,它会把日志输出到容器里的 /var/log/1.log 和 2.log 这两个文件里。这个 Pod 的 YAML 文件如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

apiVersion: v1

kind: Pod

metadata:

  name: counter

spec:

  containers:

  - name: count

    image: busybox

    args:

    - /bin/sh

    - -c

    - >

      i=0;

      while true;

      do

        echo "$i: $(date)" >> /var/log/1.log;

        echo "$(date) INFO $i" >> /var/log/2.log;

        i=$((i+1));

        sleep 1;

      done

    volumeMounts:

    - name: varlog

      mountPath: /var/log

  volumes:

  - name: varlog

    emptyDir: {}

在这种情况下,你用 kubectl logs 命令是看不到应用的任何日志的。而且我们前面讲解的、最常用的方案一,也是没办法使用的。

那么这个时候,我们就可以为这个 Pod 添加两个 sidecar 容器,分别将上述两个日志文件里的内容重新以 stdout 和 stderr 的方式输出出来,这个 YAML 文件的写法如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

apiVersion: v1

kind: Pod

metadata:

  name: counter

spec:

  containers:

  - name: count

    image: busybox

    args:

    - /bin/sh

    - -c

    - >

      i=0;

      while true;

      do

        echo "$i: $(date)" >> /var/log/1.log;

        echo "$(date) INFO $i" >> /var/log/2.log;

        i=$((i+1));

        sleep 1;

      done

    volumeMounts:

    - name: varlog

      mountPath: /var/log

  - name: count-log-1

    image: busybox

    args: [/bin/sh, -c, 'tail -n+1 -f /var/log/1.log']

    volumeMounts:

    - name: varlog

      mountPath: /var/log

  - name: count-log-2

    image: busybox

    args: [/bin/sh, -c, 'tail -n+1 -f /var/log/2.log']

    volumeMounts:

    - name: varlog

      mountPath: /var/log

  volumes:

  - name: varlog

    emptyDir: {}

这时候,你就可以通过 kubectl logs 命令查看这两个 sidecar 容器的日志,间接看到应用的日志内容了,如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

$ kubectl logs counter count-log-1

0: Mon Jan 1 00:00:00 UTC 2001

1: Mon Jan 1 00:00:01 UTC 2001

2: Mon Jan 1 00:00:02 UTC 2001

...

$ kubectl logs counter count-log-2

Mon Jan 1 00:00:00 UTC 2001 INFO 0

Mon Jan 1 00:00:01 UTC 2001 INFO 1

Mon Jan 1 00:00:02 UTC 2001 INFO 2

...

由于 sidecar 跟主容器之间是共享 Volume 的,所以这里的 sidecar 方案的额外性能损耗并不高,也就是多占用一点 CPU 和内存罢了。

但需要注意的是,这时候,宿主机上实际上会存在两份相同的日志文件:一份是应用自己写入的;另一份则是 sidecar 的 stdout 和 stderr 对应的 JSON 文件。这对磁盘是很大的浪费。所以说,除非万不得已或者应用容器完全不可能被修改,否则我还是建议你直接使用方案一,或者直接使用下面的第三种方案。

**第三种方案,就是通过一个 sidecar 容器,直接把应用的日志文件发送到远程存储里面去。**也就是相当于把方案一里的 logging agent,放在了应用 Pod 里。这种方案的架构如下所示:


在这种方案里,你的应用还可以直接把日志输出到固定的文件里而不是 stdout,你的 logging-agent 还可以使用 fluentd,后端存储还可以是 ElasticSearch。只不过,fluentd 的输入源,变成了应用的日志文件。一般来说,我们会把 fluentd 的输入源配置保存在一个 ConfigMap 里,如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

apiVersion: v1

kind: ConfigMap

metadata:

  name: fluentd-config

data:

  fluentd.conf: |

    <source>

      type tail

      format none

      path /var/log/1.log

      pos_file /var/log/1.log.pos

      tag count.format1

    </source>

        <source>

      type tail

      format none

      path /var/log/2.log

      pos_file /var/log/2.log.pos

      tag count.format2

    </source>

        <match **>

      type google_cloud

    </match>

然后,我们在应用 Pod 的定义里,就可以声明一个 Fluentd 容器作为 sidecar,专门负责将应用生成的 1.log 和 2.log 转发到 ElasticSearch 当中。这个配置,如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

apiVersion: v1

kind: Pod

metadata:

  name: counter

spec:

  containers:

  - name: count

    image: busybox

    args:

    - /bin/sh

    - -c

    - >

      i=0;

      while true;

      do

        echo "$i: $(date)" >> /var/log/1.log;

        echo "$(date) INFO $i" >> /var/log/2.log;

        i=$((i+1));

        sleep 1;

      done

    volumeMounts:

    - name: varlog

      mountPath: /var/log

  - name: count-agent

    image: k8s.gcr.io/fluentd-gcp:1.30

    env:

    - name: FLUENTD_ARGS

      value: -c /etc/fluentd-config/fluentd.conf

    volumeMounts:

    - name: varlog

      mountPath: /var/log

    - name: config-volume

      mountPath: /etc/fluentd-config

  volumes:

  - name: varlog

    emptyDir: {}

  - name: config-volume

    configMap:

      name: fluentd-config

可以看到,这个 Fluentd 容器使用的输入源,就是通过引用我们前面编写的 ConfigMap 来指定的。这里我用到了 Projected Volume 来把 ConfigMap 挂载到 Pod 里。如果你对这个用法不熟悉的话,可以再回顾下第 15 篇文章《深入解析 Pod 对象(二):使用进阶》中的相关内容。

需要注意的是,这种方案虽然部署简单,并且对宿主机非常友好,但是这个 sidecar 容器很可能会消耗较多的资源,甚至拖垮应用容器。并且,由于日志还是没有输出到 stdout 上,所以你通过 kubectl logs 是看不到任何日志输出的。

以上,就是 Kubernetes 项目对容器应用日志进行管理最常用的三种手段了。

总结

在本篇文章中,我为你详细讲解了 Kubernetes 项目对容器应用日志的收集方式。综合对比以上三种方案,我比较建议你将应用日志输出到 stdout 和 stderr,然后通过在宿主机上部署 logging-agent 的方式来集中处理日志。

这种方案不仅管理简单,kubectl logs 也可以用,而且可靠性高,并且宿主机本身,很可能就自带了 rsyslogd 等非常成熟的日志收集组件来供你使用。

除此之外,还有一种方式就是在编写应用的时候,就直接指定好日志的存储后端,如下所示:


在这种方案下,Kubernetes 就完全不必操心容器日志的收集了,这对于本身已经有完善的日志处理系统的公司来说,是一个非常好的选择。

最后需要指出的是,无论是哪种方案,你都必须要及时将这些日志文件从宿主机上清理掉,或者给日志目录专门挂载一些容量巨大的远程盘。否则,一旦主磁盘分区被打满,整个系统就可能会陷入奔溃状态,这是非常麻烦的。

思考题

  1. 请问,当日志量很大的时候,直接将日志输出到容器 stdout 和 stderr 上,有没有什么隐患呢?有没有解决办法呢?
  2. 你还有哪些容器收集的方案,是否可以分享一下?

感谢你的收听,欢迎你给我留言,也欢迎分享给更多的朋友一起阅读。