在编译器的后端,我们要能够针对不同的计算机硬件,生成优化的代码。在23 讲,我曾带你试着生成过汇编代码,但当时生成汇编代码的逻辑是比较幼稚的,一个正式的编译器后端,代码生成部分需要考虑得更加严密才可以。

那么具体要考虑哪些问题呢?其实主要有三点:

  1. 指令的选择。同样一个功能,可以用不同的指令或指令序列来完成,而我们需要选择比较优化的方案。
  2. 寄存器分配。每款 CPU 的寄存器都是有限的,我们要有效地利用它。
  3. 指令重排序。计算执行的次序会影响所生成的代码的效率。在不影响运行结果的情况下,我们要通过代码重排序获得更高的效率。

我会用两节课的时间,带你对这三点问题建立直观认识,然后,我还会介绍 LLVM 的实现策略。这样一来,你会对目标代码的生成,建立比较清晰的顶层认知,甚至可以尝试去实现自己的算法。

接下来,我们针对第一个问题,聊一聊为什么需要选择指令,以及如何选择指令。

选择正确的指令

你可能会问:我们为什么非要关注指令的选择呢?我来做个假设。

如果我们不考虑目标代码的性能,可以按照非常机械的方式翻译代码。比如,我们可以制定一个代码翻译的模板,把形如“a := b + c”的代码都翻译成下面的汇编代码:

mov b, r0 // 把 b 装入寄存器 r0
add c, r0 // 把 c 加到 r0 上
mov r0, a // 把 r0 存入 a

那么,下面两句代码:

a := b + c
d := a + e

将被机械地翻译成:

mov b, r0
add c, r0
mov r0, a
mov a, r0
add e, r0
mov r0, d

你可以从上面这段代码中看到,第 4 行其实是多余的,因为 r0 的值就是 a,不用再装载一遍了。另外,如果后面的代码不会用到 a(也就是说 a 只是个临时变量),那么第 3 行也是多余的。

这种算法很幼稚,正确性没有问题,但代码量太大,代价太高。所以我们最好用聪明一点儿的算法来生成更加优化的代码。这是我们要做指令选择的原因之一。

**做指令选择的第二个原因是,**实现同一种功能可以使用多种指令,特别是 CISC 指令集(可替代的选择很多,但各自有适用的场景)。

对于某个 CPU 来说,完成同样的任务可以采用不同的指令。比如,实现“a := a + 1”,可以生成三条代码:

mov a, r0
add $1, r0
mov r0, a

也可以直接用一行代码,采用 inc 指令,而我们要看看用哪种方法总体代价最低:

inc a

第二个例子,把 r0 寄存器置为 0,也可以有多个方法:

mov $0, r0 // 赋值为立即数 0
xor r0, r0 // 异或操作
sub r0, r0 // 用自身的值去减

再比如,a * 7 可以用 a«3 - a 实现:首先移位 3 位,相当于乘 8,然后再减去一次 a,就相当于乘以 7。虽然用了两条指令,但是,可能消耗的总的时钟周期更少。

**在这里我想再次强调一下,**无论是为了生成更简短的代码,还是从多种可能的指令中选择最优的,我们确实需要关注指令的选择。那么,我们做指令选择的思路是什么呢?目前最成熟的算法都是基于树覆盖的方法,我通过一个例子带你了解一下,什么是树覆盖算法。

a[i] = b 这个表达式的意思是,给数组 a 的第 i 个元素赋值为 b。假设 a 和 b 都是栈里的本地变量,i 是放在寄存器 ri 中。这个表达式可以用一个 AST 表示。

你可能觉得这棵树看着像 AST,但又不大像,那是因为里面有 mem 节点(意思是存入内存)、mov 节点、栈指针 (fp)。**它可以算作低级(low-level)AST,是一种 IR 的表达方式,有时被称为结构化 IR。**这个 AST 里面包含了丰富的运行时的细节信息,相当于把 LLVM 的 IR 用树结构来表示了。你可以把一个基本块的指令都画成这样的树状结构。

基于这棵树,我们可以翻译成汇编代码:

load M[fp+a], r1 // 取出数组开头的地址,放入 r1,fp 是栈桢的指针,a 是地址的偏移量
addi 4, r2 // 把 4 加载到 r2
mul ri, r2 // 把 ri 的值乘到 r2 上,即 i*4,即数组元素的偏移量,每个元素 4 字节
add r2, r1 // 把 r2 加到 r1 上,也就是算出 a[i] 的地址
load M[fp+b], r2 // 把 b 的值加载到 r2 寄存器
store r2, M[r1] // 把 r2 写入地址为 r1 的内存

在这里,我用了一种假想的汇编代码,跟 LLVM IR 有点儿像,但更简化、易读:

**注意,**我们生成的汇编代码还是比较精简的。如果采用比较幼稚的方法,逐个树节点进行翻译,代码会很多,你可以手工翻译试试看。

用树覆盖的方法可以大大减少代码量,其中用橙色的线包围的部分被形象地叫做**一个瓦片 (tiling),**那些包含了操作符的瓦片,就可以转化成一条指令。每个瓦片可以覆盖多个节点,所以生成的指令比较少。

那我们是用什么来做瓦片的呢?原来,每条机器指令,都会对应 IR 的一些模式(Pattern),可以表示成一些小的树,而这些小树就可以当作瓦片:

我们的算法可以遍历 AST,遇到上面的模式,就可以生成对应的指令。**以 load 指令为例,它有几个模式:**任意一个节点加上一个常量就行,这相当于汇编语言中的间接地址访问;或者 mem 下直接就是一个常量就行,这相当于是直接地址访问。最后,地址值还可以由下级子节点计算出来。

所以,从一棵 AST 生成代码的过程,就是用上面这些小树去匹配一棵大树,并把整个大树覆盖的过程,所以叫做树覆盖算法。2、4、5、6、8、9 这几个节点依次生成汇编代码。

要注意的是,覆盖方式可能会有多个,比如下面这个覆盖方式,相比之前的结果,它在 8 和 9 两个瓦片上是有区别的:

生成的汇编代码最后两句也不同:

load M[fp+a], r1 // 取出数组开头的地址,放入 r1,fp 是栈桢的指针,a 是地址的偏移量
addi 4, r2 // 把 4 加载到 r2
mul ri, r2 // 把 ri 的值乘到 r2 上,即 i*4,即数组元素的偏移量,每个元素 4 字节
add r2, r1 // 把 r2 加到 r1 上,也就是算出 a[i] 的地址
addi fp+b, r2 // 把 fp+b 的值加载到 r2 寄存器
movm M[r2], M[r1] // 把地址为 r2 到值拷贝到地址为 r1 内存里

你可以体会一下,这两个覆盖方式的差别:

  1. 对于瓦片 8 中的加法运算,一个当做了间接地址的计算,一个就是当成加法;
  2. 对于根节点的操作,一个翻译成从 store,把寄存器中的 b 的值写入到内存。一个翻译成 movm 指令,直接在内存之间拷贝值。至于这两种翻译方法哪种更好,比较总体的性能哪个更高就行了。

到目前为止,你已经直观地了解了为什么要进行指令选择,以及最常用的树覆盖方法了。当然了,树覆盖算法有很多,比如 Maximal Munch 算法、动态规划算法、树文法等,LLVM 也有自己的算法。

**简单地说一下 Maximal Munch 算法。**Maximal Munch 直译成中文,是每次尽量咬一大口的意思。具体来说,就是从树根开始,每次挑一个能覆盖最多节点的瓦片,这样就形成几棵子树。对每棵子树也都用相同的策略,这样会使得生成的指令是最少的。注意,指令的顺序要反过来,按照深度优先的策略,先是叶子,再是树根。这个算法是 Optimal 的算法。

Optimal 被翻译成最佳,我不太赞正这种翻译方法,翻译成“较优”会比较合适,它指的是在局部,相邻的两个瓦片不可能连接成代价更低的瓦片。覆盖算法除了 Optimal 的还有 Optimum 的,Optimum 是全局最优化的状态,就是代码总体的代价是最低的。

关于其他算法的细节在本节课就不展开了,因为根据我的经验,在学指令选择时,最重要的还是建立图形化的、直观的理解,理解什么是瓦片,如何覆盖会得到最优的结果。

接下来,我们继续探讨开篇提到的第二个问题:寄存器分配。

分配寄存器

寄存器优化的任务是:最大程度地利用寄存器,但不要超过寄存器总数量的限制。

因为我们生成 IR 时,是不知道目标机器的信息的,也就不知道目标机器到底有几个寄存器可以用,所以我们在 IR 中可以使用无限个临时变量,每个临时变量都代表一个寄存器。

现在既然要生成针对目标机器的代码,也就知道这些信息了,那么就要把原来的 IR 改写一下,以便使用寄存器时不超标。

那么寄存器优化的原理是什么呢?我用一个例子带你了解一下。

下图左边的 IR 中,a、d、f 这三个临时变量不会同时出现。假设 a 和 d 在这个代码块之后成了死变量,那么这三个变量可以共用同一个寄存器,就像右边显示的那样:

实际上,这三行代码是对“b + c + e + 10”这个表达式的翻译,所以 a 和 d 都是在转换为 IR 时引入的中间变量,用完就不用了。这和在 23 讲,我们把 8 个参数以及一个本地变量相加时,只用了一个寄存器来一直保存累加结果,是一样的。

所以,通过这个例子,**你可以直观地理解寄存器共享的原则:**如果存在两个临时变量 a 和 b,它们在整个程序执行过程中,最多只有一个变量是活跃的,那么这两个变量可以共享同一个寄存器。

在27和28 讲中,你已经学过了如何做变量的活跃性分析,所以你可以很容易分析出,在任何一个程序点,活跃变量的集合。然后,你再看一下,哪些变量从来没有出现在同一个集合中就行。看看下面的这个图:

上图中,凡是出现在同一个花括号里的变量,都不能共享寄存器,因为它们在某个时刻是同时活跃的。那 a 到 f,哪些变量从来没碰到过呢?我们再画一个图来寻找一下。

下图中,每个临时变量作为一个节点,如果两个变量同时存在过,就画一条边。这样形成的图,叫做寄存器干扰图 (Register Interference Graph, RIG)。在这张图里,凡是没有连线的两个变量,就可以分配到同一个寄存器,例如,a 和 b,b 和 d,a 和 d,b 和 e,a 和 e。

**那么问题来了:**针对这个程序,我们一共需要几个寄存器?怎么分配呢?

**一个比较常用的算法是图染色算法:**只要两个节点之间有连线,节点就染成不同的颜色。最后所需要的最少颜色,就是所需要的寄存器的数量。我画了两个染色方案,都是需要 4 种颜色:

不过我们是手工染色的,那么如何用算法来染色呢?假如一共有 4 个寄存器,我们想用算法知道寄存器是否够用?应该如何染色?

染色算法很简单。如果想知道 k 个寄存器够不够用,你只需要找到一个少于 k 条边的节点,把它从图中去掉。接着再找下一个少于 k 条边的节点,再去掉。如果最后整个图都被删掉了,那么这个图一定可以用 k 种颜色来染色。

**为什么呢?**因为如果一个图(蓝色边的)是能用 k 种颜色染色的,那么再加上一个节点,它的边的数量少于 k 个,比如是 n,那么这个大一点儿的图(橙色边的)还是可以用 k 种颜色染色的。道理很简单,因为加进来的节点的边数少于 k 个,所以一定能找到一个颜色,与这个点的 n 个邻居都不相同。

所以,我们把刚才一个个去掉节点的顺序反过来,把一个个节点依次加到图上,每加上一个,就找一个它的邻居没有用的颜色来染色就行了。整个方法简单易行。

但是,如果所需要寄存器比实际寄存器的数量少,该怎么办呢?当然是用栈了。这个问题就是寄存器溢出(Register Spilling),溢出到栈里去,我在21 讲关于运行时机制时提到过,像本地变量、参数、返回值等,都尽量用寄存器,如果寄存器不够用,那就放到栈里。另外再说一下,无论放在寄存器里,还是栈里,都是活动记录的组成部分,所以活动记录这个概念比栈桢更广义。

**还是拿上面的例子来说,**如果只有 3 个寄存器,那么要计算一下 3 个寄存器够不够用。我们先把 a 和 b 从图中去掉:

这时你发现,剩下的 4 个节点,每个节点都有 3 个邻居。所以,3 个寄存器肯定不够用,必须要溢出一个去。我们可以选择让 f 保存在栈里,把 f 去掉以后,剩下的 c,d,e 可以用 3 种颜色成功染色。

这就结束了吗?当然没有。f 虽然被保存到了栈里,但每次使用它的时候,都要 load 到一个临时变量,也就是寄存器中。每次保存 f,也都要用一个临时变量写入到内存。所以,我们要把原来的代码修改一下,把每个使用 f 的地方,都加上一条 load 或 save 指令,以便在使用 f 的时候把 f 放到寄存器,用完后再写回内存。修改后的 CFG 如下:

因为原来有 4 个地方用到了 f,所以我们引入了 f1 到 f4 四个临时变量。这样的话,总的临时变量反而变多了,从 6 个到了 9 个。不过没关系,虽然临时变量更多了,但这几个临时变量的生存期都很短,图里带有 f 的活跃变量集合,比之前少多了。所以,即使有 9 个临时变量,也能用三种颜色染色,如下图所示:

最后,在选择把哪个变量溢出的时候,你实际上是要有所选择的。你最好选择使用次数最少的变量。在程序内循环中的变量,就最好不要溢出,因为每次循环都会用到它们,还是放在寄存器里性能更高。

目前为止,代码生成中的第二项重要工作,分配寄存器就概要地讲完了。我留给你一段时间消化本节课的内容,在下一讲,我会接着讲指令重排序和 LLVM 的实现。

课程小结

目标代码生成过程中有三个关键知识点:指令选择、寄存器分配和指令重排序,本节课,我讲了前两个,期望能帮你理解这两个问题的实质,让你对指令选择和寄存器分配这两个问题建立直观理解。这样你再去研究不同的算法时,脑海里会有这两个概念的顶层的、图形化的认识,事半功倍。与此同时,本节课我希望你记住几个要点如下:

  1. 相同的 IR 可以由不同的机器指令序列来实现。你要理解瓦片为什么长那个样子,并且在大脑里建立用瓦片覆盖一棵 AST 的直观印象,最好具备多种覆盖方式,从而把这个问题由抽象变得具象。
  2. 寄存器分配是编译器必须要做的一项工作,它把可以使用无限多寄存器的 IR,变成了满足物理寄存器数量的 IR,超出的要溢出到内存中保管。染色算法是其中一个可行的算法。

一课一思

关于指令选择,你是否知道其他的例子,让同一个功能可以用不同的指令实现?欢迎在留言区分享你的经验。

最后,感谢你的阅读,如果这篇文章让你有所收获,也欢迎你将它分享给更多的朋友。