前面两节,我们讲了如何使用系统调用,创建进程和线程。你是不是觉得进程和线程管理,还挺复杂的呢?如此复杂的体系,在内核里面应该如何管理呢?

有的进程只有一个线程,有的进程有多个线程,它们都需要由内核分配 CPU 来干活。可是 CPU 总共就这么几个,应该怎么管理,怎么调度呢?你是老板,这个事儿得你来操心。

首先,我们得明确,公司的项目售前售后人员,接来了这么多的项目,这是个好事儿。这些项目都通过办事大厅立了项的,有的需要整个项目组一起开发,有的是一个项目组分成多个小组并行开发。无论哪种模式,到你这个老板这里,都需要有一个项目管理体系,进行统一排期、统一管理和统一协调。这样,你才能对公司的业务了如指掌。

那具体应该怎么做呢?还记得咱们平时开发的时候,用的项目管理软件 Jira 吧?它的办法对我们来讲,就很有参考意义。

我们这么来看,其实,无论是一个大的项目组一起完成一个大的功能(单体应用模式),还是把一个大的功能拆成小的功能并行开发(微服务模式),这些都是开发组根据客户的需求来定的,项目经理没办法决定,但是从项目经理的角度来看,这些都是任务,需要同样关注进度、协调资源等等。

同样在 Linux 里面,无论是进程,还是线程,到了内核里面,我们统一都叫任务(Task),由一个统一的结构task_struct进行管理。这个结构非常复杂,但你也不用怕,我们慢慢来解析。

接下来,我们沿着建立项目管理体系的思路,设想一下,Linux 的任务管理都应该干些啥?

首先,所有执行的项目应该有个项目列表吧,所以 Linux 内核也应该先弄一个链表,将所有的 task_struct 串起来。

1
2

struct list_head		tasks;

接下来,我们来看每一个任务都应该包含哪些字段。

任务 ID

每一个任务都应该有一个 ID,作为这个任务的唯一标识。到时候排期啊、下发任务啊等等,都按 ID 来,就不会产生歧义。

task_struct 里面涉及任务 ID 的,有下面几个:

1
2
3
4
5
6

pid_t pid;

pid_t tgid;

struct task_struct *group_leader; 

你可能觉得奇怪,既然是 ID,有一个就足以做唯一标识了,这个怎么看起来这么麻烦?这是因为,上面的进程和线程到了内核这里,统一变成了任务,这就带来两个问题。

第一个问题是,任务展示

啥是任务展示呢?这么说吧,你作为老板,想了解的肯定是,公司都接了哪些项目,每个项目多少营收。什么项目执行是不是分了小组,每个小组是啥情况,这些细节,项目经理没必要全都展示给你看。

前面我们学习命令行的时候,知道 ps 命令可以展示出所有的进程。但是如果你是这个命令的实现者,到了内核,按照上面的任务列表把这些命令都显示出来,把所有的线程全都平摊开来显示给用户。用户肯定觉得既复杂又困惑。复杂在于,列表这么长;困惑在于,里面出现了很多并不是自己创建的线程。

第二个问题是,给任务下发指令

如果客户突然给项目组提个新的需求,比如说,有的客户觉得项目已经完成,可以终止;再比如说,有的客户觉得项目做到一半没必要再进行下去了,可以中止,这时候应该给谁发指令?当然应该给整个项目组,而不是某个小组。我们不能让客户看到,不同的小组口径不一致。这就好比说,中止项目的指令到达一个小组,这个小组很开心就去休息了,同一个项目组的其他小组还干的热火朝天的。

Linux 也一样,前面我们学习命令行的时候,知道可以通过 kill 来给进程发信号,通知进程退出。如果发给了其中一个线程,我们就不能只退出这个线程,而是应该退出整个进程。当然,有时候,我们希望只给某个线程发信号。

所以在内核中,它们虽然都是任务,但是应该加以区分。其中,pid 是 process id,tgid 是 thread group ID。

任何一个进程,如果只有主线程,那 pid 是自己,tgid 是自己,group_leader 指向的还是自己。

但是,如果一个进程创建了其他线程,那就会有所变化了。线程有自己的 pid,tgid 就是进程的主线程的 pid,group_leader 指向的就是进程的主线程。

好了,有了 tgid,我们就知道 tast_struct 代表的是一个进程还是代表一个线程了。

信号处理

这里既然提到了下发指令的问题,我就顺便提一下 task_struct 里面关于信号处理的字段。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

/* Signal handlers: */

struct signal_struct		*signal;

struct sighand_struct		*sighand;

sigset_t			blocked;

sigset_t			real_blocked;

sigset_t			saved_sigmask;

struct sigpending		pending;

unsigned long			sas_ss_sp;

size_t				sas_ss_size;

unsigned int			sas_ss_flags;

这里定义了哪些信号被阻塞暂不处理(blocked),哪些信号尚等待处理(pending),哪些信号正在通过信号处理函数进行处理(sighand)。处理的结果可以是忽略,可以是结束进程等等。

信号处理函数默认使用用户态的函数栈,当然也可以开辟新的栈专门用于信号处理,这就是 sas_ss_xxx 这三个变量的作用。

上面我说了下发信号的时候,需要区分进程和线程。从这里我们其实也能看出一些端倪。

task_struct 里面有一个 struct sigpending pending。如果我们进入 struct signal_struct *signal 去看的话,还有一个 struct sigpending shared_pending。它们一个是本任务的,一个是线程组共享的。

关于信号,你暂时了解到这里就够用了,后面我们会有单独的章节进行解读。

任务状态

作为一个项目经理,另外一个需要关注的是项目当前的状态。例如,在 Jira 里面,任务的运行就可以分成下面的状态。

在 task_struct 里面,涉及任务状态的是下面这几个变量:

1
2
3
4
5
6

 volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */

 int exit_state;

 unsigned int flags;

state(状态)可以取的值定义在 include/linux/sched.h 头文件中。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/* Used in tsk->state: */

#define TASK_RUNNING                    0

#define TASK_INTERRUPTIBLE              1

#define TASK_UNINTERRUPTIBLE            2

#define __TASK_STOPPED                  4

#define __TASK_TRACED                   8

/* Used in tsk->exit_state: */

#define EXIT_DEAD                       16

#define EXIT_ZOMBIE                     32

#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)

/* Used in tsk->state again: */

#define TASK_DEAD                       64

#define TASK_WAKEKILL                   128

#define TASK_WAKING                     256

#define TASK_PARKED                     512

#define TASK_NOLOAD                     1024

#define TASK_NEW                        2048

#define TASK_STATE_MAX                  4096

从定义的数值很容易看出来,flags 是通过 bitset 的方式设置的也就是说,当前是什么状态,哪一位就置一。

TASK_RUNNING 并不是说进程正在运行,而是表示进程在时刻准备运行的状态。当处于这个状态的进程获得时间片的时候,就是在运行中;如果没有获得时间片,就说明它被其他进程抢占了,在等待再次分配时间片。

在运行中的进程,一旦要进行一些 I/O 操作,需要等待 I/O 完毕,这个时候会释放 CPU,进入睡眠状态。

在 Linux 中,有两种睡眠状态。

一种是TASK_INTERRUPTIBLE可中断的睡眠状态。这是一种浅睡眠的状态,也就是说,虽然在睡眠,等待 I/O 完成,但是这个时候一个信号来的时候,进程还是要被唤醒。只不过唤醒后,不是继续刚才的操作,而是进行信号处理。当然程序员可以根据自己的意愿,来写信号处理函数,例如收到某些信号,就放弃等待这个 I/O 操作完成,直接退出,也可也收到某些信息,继续等待。

另一种睡眠是TASK_UNINTERRUPTIBLE不可中断的睡眠状态。这是一种深度睡眠状态,不可被信号唤醒,只能死等 I/O 操作完成。一旦 I/O 操作因为特殊原因不能完成,这个时候,谁也叫不醒这个进程了。你可能会说,我 kill 它呢?别忘了,kill 本身也是一个信号,既然这个状态不可被信号唤醒,kill 信号也被忽略了。除非重启电脑,没有其他办法。

因此,这其实是一个比较危险的事情,除非程序员极其有把握,不然还是不要设置成 TASK_UNINTERRUPTIBLE。

于是,我们就有了一种新的进程睡眠状态,TASK_KILLABLE,可以终止的新睡眠状态。进程处于这种状态中,它的运行原理类似 TASK_UNINTERRUPTIBLE,只不过可以响应致命信号。

从定义可以看出,TASK_WAKEKILL 用于在接收到致命信号时唤醒进程,而 TASK_KILLABLE 相当于这两位都设置了。

1
2

#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)

TASK_STOPPED 是在进程接收到 SIGSTOP、SIGTTIN、SIGTSTP 或者 SIGTTOU 信号之后进入该状态。

TASK_TRACED 表示进程被 debugger 等进程监视,进程执行被调试程序所停止。当一个进程被另外的进程所监视,每一个信号都会让进程进入该状态。

一旦一个进程要结束,先进入的是 EXIT_ZOMBIE 状态,但是这个时候它的父进程还没有使用 wait() 等系统调用来获知它的终止信息,此时进程就成了僵尸进程。

EXIT_DEAD 是进程的最终状态。

EXIT_ZOMBIE 和 EXIT_DEAD 也可以用于 exit_state。

上面的进程状态和进程的运行、调度有关系,还有其他的一些状态,我们称为标志。放在 flags 字段中,这些字段都被定义称为,以 PF 开头。我这里举几个例子。

1
2
3
4
5
6

#define PF_EXITING		0x00000004

#define PF_VCPU			0x00000010

#define PF_FORKNOEXEC		0x00000040

PF_EXITING表示正在退出。当有这个 flag 的时候,在函数 find_alive_thread 中,找活着的线程,遇到有这个 flag 的,就直接跳过。

PF_VCPU表示进程运行在虚拟 CPU 上。在函数 account_system_time 中,统计进程的系统运行时间,如果有这个 flag,就调用 account_guest_time,按照客户机的时间进行统计。

PF_FORKNOEXEC表示 fork 完了,还没有 exec。在 _do_fork 函数里面调用 copy_process,这个时候把 flag 设置为 PF_FORKNOEXEC。当 exec 中调用了 load_elf_binary 的时候,又把这个 flag 去掉。

进程调度

进程的状态切换往往涉及调度,下面这些字段都是用于调度的。为了让你理解 task_struct 进程管理的全貌,我先在这里列一下,咱们后面会有单独的章节讲解,这里你只要大概看一下里面的注释就好了。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// 是否在运行队列上

int				on_rq;

// 优先级

int				prio;

int				static_prio;

int				normal_prio;

unsigned int			rt_priority;

// 调度器类

const struct sched_class	*sched_class;

// 调度实体

struct sched_entity		se;

struct sched_rt_entity		rt;

struct sched_dl_entity		dl;

// 调度策略

unsigned int			policy;

// 可以使用哪些 CPU

int				nr_cpus_allowed;

cpumask_t			cpus_allowed;

struct sched_info		sched_info;

总结时刻

这一节,我们讲述了进程管理复杂的数据结构,我还是画一个图总结一下。这个图是进程管理 task_struct 的的结构图。其中红色的部分是今天讲的部分,你可以对着这张图说出它们的含义。

课堂练习

这一节我们讲了任务的状态,你可以试着在代码里面搜索一下这些状态改变的地方是哪个函数,是什么时机,从而进一步理解任务的概念。

欢迎留言和我分享你的疑惑和见解,也欢迎你收藏本节内容,反复研读。你也可以把今天的内容分享给你的朋友,和他一起学习、进步。