你好,我是朱维刚。欢迎你继续跟我学习线性代数。

今天我要讲的内容是“如何通过有限向量空间加持的希尔密码,提高密码被破译的难度”。

这篇的内容会非常有趣,是和密码加密、解密有关的。不知道你有没有看过电影《模仿游戏》,故事描述的是阿兰·图灵在二战期间破译德军的恩尼格玛密码机(Enigma),很精彩,我看了很多遍。

不过电影毕竟是电影,有许多内容是不现实的,好在表达出来的破译恩尼格玛密码的核心观点是正确的。要破译一份被恩尼格玛机加密的密文,需要这三类信息:

  1. 恩格玛机的工作原理及内部构造,包括每个转子的线路连接;
  2. 德军对恩格玛机的操作守则;
  3. 德军所使用的每日初始设置。恩格玛机的每日初始设置包含了三个信息:即转子的排列顺序、每个转子的初始位置,以及插线板的设置。这些信息被印刷在密码本上分发至德军全军,每 24 小时更换一次设置,每月更换一次密码本。

这些在电影里确实都交代了,我也不过多剧透了。其实,恩尼格玛密码机的本质就是替换密码。而今天我要讲的也是一种替换密码——希尔密码。因为我们专栏讲的是线性代数,所以,这篇应用我们会以矩阵论原理为基础,来进行讲解。

为什么需要希尔密码?

要讲密码,我们得先知道人们为什么需要它。

最古老、最原始的加密算法,会把明文的字母按照某种配对关系替换成其他的字母,从而得到一段别人看不懂的密文,许多谍战剧用到过这类方法。看起来,这个方法好像很难人为进行破解,但从语言和统计学角度看,它其实是漏洞百出的。

举个例子,在一篇普通英语文章中,各字母出现的概率有很大的不同。如果我们对足够多的文本进行分析,就可以统计出每一个字母在英文文本中出现的平均概率。

上面这张图来自维基百科,显示的是 26 个字母在普通的英文文本中出现的概率。

只要我们能够获取足够长的密文进行分析的话,通过字母出现的频率,我们同样能够猜到相应的原始字母,这并不安全。所以,随着安全性需求的提高,人们有必要寻找一种容易将字母的自然频度隐蔽或均匀化,并使得统计分析足够安全可靠的加密方法。而希尔密码能基本满足这一要求,那么希尔密码是怎么做到这一点的呢?

希尔密码原理

我们先来看一下希尔密码的原理。根据百度百科的定义,希尔密码(Hill Cipher)是运用基本矩阵论原理的替换密码,由 Lester S. Hill 在 1929 年发明。每个字母当作 26 进制数字:A=0,B=1,C=2… ,把一串字母当成 n 维向量,和一个 n×n 的矩阵相乘,再将得出的结果和 26 进行模运算。

所以,希尔加密算法的基本思想是,通过线性变换将固定数量的明文字母转换为同样数量的密文字母,解密只要作一次逆变换就可以了,而密钥就是变换矩阵本身。

现在,我们再通过数学的方式来表达一下,希尔密码是如何通过三步来实现加密的。

第一步,设置加密矩阵 E。

第二步,对照字母编码表(自行设定)得到数字,并把明文消息分割成大小为 n 的多个块:v1​,v2​,…,并且忽略空格。这里之所以忽略空格,是因为一般情况下密码传递的信息不会过于复杂。如果密码过于复杂,是可以分多次传递的。这里的 n 表示的密钥的阶数,密钥的阶数越高,也就是 n 越大的话,破译的难度也就越大,所需要的计算量也就越大。

第三步,每个消息块和加密矩阵 E 相乘:Ev1​,Ev2​,…,并和 26 进行模运算,最后对照字母编码表得到密文。

同样,我们把这三步倒过来,就能实现解密了。

第一步,计算加密矩阵 E 的逆矩阵 D≡E−1(mod26)。

第二步,对照字母编码表得到数字,把它和解密矩阵 D 相乘,并和 26 进行模运算。

第三步,对照编码表,得到原始明文。

这里你需要注意的是,加密矩阵很关键,它就是我们通常意义上所说的“密钥”,也就是打开密码的钥匙。

通过前面讲解的加密解密步骤,我们可以看出,希尔密码之所以很难被破译,是因为它设置了三道关卡:

  1. 列矩阵的维度未知;
  2. 对应字母表的排列未知;
  3. 加密矩阵(或者说密钥)未知。

想要破解希尔密码,就需要同时获取到通过这三道关卡的钥匙,这谈何容易。

希尔密码实例

好了,原理都讲完了,现在我们通过一个例子来实际地看下希尔密码加密和解密的过程。

假设:A 和 B 双方有一条重要消息要沟通,双方很早就建立了密钥沟通机制,每过一段时间都会更新密钥。在这次的密钥更新周期中,正确的密钥,也就是加密矩阵是一个 3×3 矩阵。

E=⎣⎡​61320​241617​11015​⎦⎤​

这一次 A 要给 B 的消息是“ILIKEBODYCOMBAT”,我们用之前的三步在 A 方先来加密:

第一步,定义加密矩阵,也就是刚才的 E 矩阵。

第二步,对照字母编码表得到数字:8、11、8、10、4、1、14、3、24、2、14、12、1、0、19。接下来,把明文消息分割成大小为 3 的 5 个块,也就是维度为 3 的 5 个列矩阵。

v1​=⎣⎡​8118​⎦⎤​,v2​=⎣⎡​1041​⎦⎤​,v3​=⎣⎡​14324​⎦⎤​,v4​=⎣⎡​21412​⎦⎤​,v5​=⎣⎡​1019​⎦⎤​

第三步,将每个消息块和加密矩阵 E 相乘:

Ev1​=⎣⎡​61320​241617​11015​⎦⎤​⎣⎡​8118​⎦⎤​=⎣⎡​320360467​⎦⎤​mod26=⎣⎡​82225​⎦⎤​

Ev2​=⎣⎡​61320​241617​11015​⎦⎤​⎣⎡​1041​⎦⎤​=⎣⎡​157204283​⎦⎤​mod26=⎣⎡​12223​⎦⎤​

Ev3​=⎣⎡​61320​241617​11015​⎦⎤​⎣⎡​14324​⎦⎤​=⎣⎡​180470691​⎦⎤​mod26=⎣⎡​24215​⎦⎤​

Ev4​=⎣⎡​61320​241617​11015​⎦⎤​⎣⎡​21412​⎦⎤​=⎣⎡​360370458​⎦⎤​mod26=⎣⎡​22616​⎦⎤​

Ev5​=⎣⎡​61320​241617​11015​⎦⎤​⎣⎡​1019​⎦⎤​=⎣⎡​25203305​⎦⎤​mod26=⎣⎡​252119​⎦⎤​

最后,对照字母编码表得到密文:“IWZBWXBCGWGQZVT”。

B 拿到这个密文后,使用三步来解密:

第一步,计算加密矩阵 E 的逆矩阵 D:

D≡⎣⎡​61320​241617​11015​⎦⎤​−1(mod26)≡⎣⎡​82121​5812​10218​⎦⎤​

第二步,对照字母编码表得到数字,把它和解密矩阵 D 相乘,并和 26 进行模运算,得到相应结果。

⎣⎡​82121​5812​10218​⎦⎤​⎣⎡​82225​⎦⎤​=⎣⎡​424869632​⎦⎤​mod26=⎣⎡​8118​⎦⎤​

⎣⎡​82121​5812​10218​⎦⎤​⎣⎡​12223​⎦⎤​=⎣⎡​348680469​⎦⎤​mod26=⎣⎡​1041​⎦⎤​

⎣⎡​82121​5812​10218​⎦⎤​⎣⎡​24215​⎦⎤​=⎣⎡​352835648​⎦⎤​mod26=⎣⎡​14324​⎦⎤​

⎣⎡​82121​5812​10218​⎦⎤​⎣⎡​22616​⎦⎤​=⎣⎡​366846662​⎦⎤​mod26=⎣⎡​21412​⎦⎤​

⎣⎡​82121​5812​10218​⎦⎤​⎣⎡​252119​⎦⎤​=⎣⎡​4951092929​⎦⎤​mod26=⎣⎡​1019​⎦⎤​

最后,B 通过对照编码表,得到了原始明文:“ILIKEBODYCOMBAT”。

这里,你也许会问,密钥为什么用的是 3×3 的可逆矩阵?那是我为了例子方便而设置的,你完全可以设置更高阶的矩阵。就像之前说的,密钥的阶数越高,也就是 n 越大的话,破译的难度也就越大,所需要的计算量也就越大。

所以,从破译密码的角度来看,传统的密码有一个致命弱点,就是破译者可从统计出来的字符频率中找到规律,进而找出破译的突破口。尤其是在计算机技术高度发达的今天,破译的速度更快。而希尔密码算法则完全克服了这一缺陷,它通过采用线性代数中的矩阵乘法运算和逆运算,能够较好地抵抗频率分析,很难被攻破。

本节小结

这一节课的内容都和密码学有关,感觉像是搞谍战一样。但其实它的核心很简单,就是通过基础篇中学到的矩阵和逆矩阵的知识,来实现希尔密码。希尔密码的关键就是定义加密矩阵,或者说密钥、字母表排列方式和列矩阵的维度,通过线性变换将固定数量的明文字母转换为同样数量的密文字母,而解密则只要作一次逆变换就可以了。

当然,现实中还有更复杂的加密算法,其中最著名的,且用到线性代数的加密算法是 AES,想必你平时也经常看到或用到过。AES 是一个迭代的、对称密钥分组的密码,它可以使用 128、192 和 256 位密钥,并且用 128、192 和 256 位分组加密和解密数据,其中密钥长度与分组长度是独立的。

线性代数练习场

请你做一回“特工”,尝试使用希尔密码来给明文“MACHINELEARNING”做加密和解密。

提醒:你可以自行定义加密矩阵、字母表排列方式和列矩阵的维度。加密矩阵可以使用之前介绍的 3×3 可逆矩阵,也可以使用其它 n×n 的可逆矩阵。

欢迎在留言区晒出你的加密和解密过程,我会及时回复。同时,也欢迎你把这篇文章分享给你的朋友,一起讨论、学习。