你好,我是朱晔。

在上一讲中,我与你介绍了使用并发容器等工具解决线程安全的误区。今天,我们来看看解决线程安全问题的另一种重要手段——锁,在使用上比较容易犯哪些错。

我先和你分享一个有趣的案例吧。有一天,一位同学在群里说“见鬼了,疑似遇到了一个 JVM 的 Bug”,我们都很好奇是什么 Bug。

于是,他贴出了这样一段代码:在一个类里有两个 int 类型的字段 a 和 b,有一个 add 方法循环 1 万次对 a 和 b 进行 ++ 操作,有另一个 compare 方法,同样循环 1 万次判断 a 是否小于 b,条件成立就打印 a 和 b 的值,并判断 a>b 是否成立。

@Slf4j
public class Interesting {

volatile int a = 1;  
volatile int b = 1;  

public void add() {  
    log.info("add start");  
    for (int i = 0; i < 10000; i++) {  
        a++;  
        b++;  
    }  
    log.info("add done");  
}  

public void compare() {  
    log.info("compare start");  
    for (int i = 0; i < 10000; i++) {  
        //a 始终等于 b 吗?  
        if (a < b) {  
            log.info("a:{},b:{},{}", a, b, a > b);  
            //最后的 a>b 应该始终是 false 吗?  
        }  
    }  
    log.info("compare done");  
}  

}

他起了两个线程来分别执行 add 和 compare 方法:

Interesting interesting = new Interesting();
new Thread(() -> interesting.add()).start();
new Thread(() -> interesting.compare()).start();

按道理,a 和 b 同样进行累加操作,应该始终相等,compare 中的第一次判断应该始终不会成立,不会输出任何日志。但,执行代码后发现不但输出了日志,而且更诡异的是,compare 方法在判断 a<b 成立的情况下还输出了 a>b 也成立:

群里一位同学看到这个问题笑了,说:“这哪是 JVM 的 Bug,分明是线程安全问题嘛。很明显,你这是在操作两个字段 a 和 b,有线程安全问题,应该为 add 方法加上锁,确保 a 和 b 的 ++ 是原子性的,就不会错乱了。”随后,他为 add 方法加上了锁:

public synchronized void add()

但,加锁后问题并没有解决。

我们来仔细想一下,为什么锁可以解决线程安全问题呢。因为只有一个线程可以拿到锁,所以加锁后的代码中的资源操作是线程安全的。但是,这个案例中的 add 方法始终只有一个线程在操作,显然只为 add 方法加锁是没用的

之所以出现这种错乱,是因为两个线程是交错执行 add 和 compare 方法中的业务逻辑,而且这些业务逻辑不是原子性的:a++ 和 b++ 操作中可以穿插在 compare 方法的比较代码中;更需要注意的是,a<b 这种比较操作在字节码层面是加载 a、加载 b 和比较三步,代码虽然是一行但也不是原子性的。

所以,正确的做法应该是,为 add 和 compare 都加上方法锁,确保 add 方法执行时,compare 无法读取 a 和 b:

public synchronized void add()
public synchronized void compare()

所以,使用锁解决问题之前一定要理清楚,我们要保护的是什么逻辑,多线程执行的情况又是怎样的。

加锁前要清楚锁和被保护的对象是不是一个层面的

除了没有分析清线程、业务逻辑和锁三者之间的关系随意添加无效的方法锁外,还有一种比较常见的错误是,没有理清楚锁和要保护的对象是否是一个层面的。

我们知道静态字段属于类,类级别的锁才能保护;而非静态字段属于类实例,实例级别的锁就可以保护。

先看看这段代码有什么问题:在类 Data 中定义了一个静态的 int 字段 counter 和一个非静态的 wrong 方法,实现 counter 字段的累加操作。

class Data {
@Getter
private static int counter = 0;

public static int reset() {  
    counter = 0;  
    return counter;  
}  

public synchronized void wrong() {  
    counter++;  
}  

}

写一段代码测试下:

@GetMapping(“wrong”)
public int wrong(@RequestParam(value = “count”, defaultValue = “1000000”) int count) {
Data.reset();
//多线程循环一定次数调用 Data 类不同实例的 wrong 方法
IntStream.rangeClosed(1, count).parallel().forEach(i -> new Data().wrong());
return Data.getCounter();
}

因为默认运行 100 万次,所以执行后应该输出 100 万,但页面输出的是 639242:

我们来分析下为什么会出现这个问题吧。

在非静态的 wrong 方法上加锁,只能确保多个线程无法执行同一个实例的 wrong 方法,却不能保证不会执行不同实例的 wrong 方法。而静态的 counter 在多个实例中共享,所以必然会出现线程安全问题。

理清思路后,修正方法就很清晰了:同样在类中定义一个 Object 类型的静态字段,在操作 counter 之前对这个字段加锁。

class Data {
@Getter
private static int counter = 0;
private static Object locker = new Object();

public void right() {  
    synchronized (locker) {  
        counter++;  
    }  
}  

}

你可能要问了,把 wrong 方法定义为静态不就可以了,这个时候锁是类级别的。可以是可以,但我们不可能为了解决线程安全问题改变代码结构,把实例方法改为静态方法。

感兴趣的同学还可以从字节码以及 JVM 的层面继续探索一下,代码块级别的 synchronized 和方法上标记 synchronized 关键字,在实现上有什么区别。

加锁要考虑锁的粒度和场景问题

在方法上加 synchronized 关键字实现加锁确实简单,也因此我曾看到一些业务代码中几乎所有方法都加了 synchronized,但这种滥用 synchronized 的做法:

  1. 一是,没必要。通常情况下 60% 的业务代码是三层架构,数据经过无状态的 Controller、Service、Repository 流转到数据库,没必要使用 synchronized 来保护什么数据。
  2. 二是,可能会极大地降低性能。使用 Spring 框架时,默认情况下 Controller、Service、Repository 是单例的,加上 synchronized 会导致整个程序几乎就只能支持单线程,造成极大的性能问题。

即使我们确实有一些共享资源需要保护,也要尽可能降低锁的粒度,仅对必要的代码块甚至是需要保护的资源本身加锁。

比如,在业务代码中,有一个 ArrayList 因为会被多个线程操作而需要保护,又有一段比较耗时的操作(代码中的 slow 方法)不涉及线程安全问题,应该如何加锁呢?

错误的做法是,给整段业务逻辑加锁,把 slow 方法和操作 ArrayList 的代码同时纳入 synchronized 代码块;更合适的做法是,把加锁的粒度降到最低,只在操作 ArrayList 的时候给这个 ArrayList 加锁。

private List data = new ArrayList<>();

//不涉及共享资源的慢方法
private void slow() {
try {
TimeUnit.MILLISECONDS.sleep(10);
} catch (InterruptedException e) {
}
}

//错误的加锁方法
@GetMapping(“wrong”)
public int wrong() {
long begin = System.currentTimeMillis();
IntStream.rangeClosed(1, 1000).parallel().forEach(i -> {
//加锁粒度太粗了
synchronized (this) {
slow();
data.add(i);
}
});
log.info(“took:{}”, System.currentTimeMillis() - begin);
return data.size();
}

//正确的加锁方法
@GetMapping(“right”)
public int right() {
long begin = System.currentTimeMillis();
IntStream.rangeClosed(1, 1000).parallel().forEach(i -> {
slow();
//只对 List 加锁
synchronized (data) {
data.add(i);
}
});
log.info(“took:{}”, System.currentTimeMillis() - begin);
return data.size();
}

执行这段代码,同样是 1000 次业务操作,正确加锁的版本耗时 1.4 秒,而对整个业务逻辑加锁的话耗时 11 秒。

如果精细化考虑了锁应用范围后,性能还无法满足需求的话,我们就要考虑另一个维度的粒度问题了,即:区分读写场景以及资源的访问冲突,考虑使用悲观方式的锁还是乐观方式的锁。

一般业务代码中,很少需要进一步考虑这两种更细粒度的锁,所以我只和你分享几个大概的结论,你可以根据自己的需求来考虑是否有必要进一步优化:

  1. 对于读写比例差异明显的场景,考虑使用 ReentrantReadWriteLock 细化区分读写锁,来提高性能。
  2. 如果你的 JDK 版本高于 1.8、共享资源的冲突概率也没那么大的话,考虑使用 StampedLock 的乐观读的特性,进一步提高性能。
  3. JDK 里 ReentrantLock 和 ReentrantReadWriteLock 都提供了公平锁的版本,在没有明确需求的情况下不要轻易开启公平锁特性,在任务很轻的情况下开启公平锁可能会让性能下降上百倍。

多把锁要小心死锁问题

刚才我们聊到锁的粒度够用就好,这就意味着我们的程序逻辑中有时会存在一些细粒度的锁。但一个业务逻辑如果涉及多把锁,容易产生死锁问题。

之前我遇到过这样一个案例:下单操作需要锁定订单中多个商品的库存,拿到所有商品的锁之后进行下单扣减库存操作,全部操作完成之后释放所有的锁。代码上线后发现,下单失败概率很高,失败后需要用户重新下单,极大影响了用户体验,还影响到了销量。

经排查发现是死锁引起的问题,背后原因是扣减库存的顺序不同,导致并发的情况下多个线程可能相互持有部分商品的锁,又等待其他线程释放另一部分商品的锁,于是出现了死锁问题。

接下来,我们剖析一下核心的业务代码。

首先,定义一个商品类型,包含商品名、库存剩余和商品的库存锁三个属性,每一种商品默认库存 1000 个;然后,初始化 10 个这样的商品对象来模拟商品清单:

@Data
@RequiredArgsConstructor
static class Item {
final String name; //商品名
int remaining = 1000; //库存剩余
@ToString.Exclude //ToString 不包含这个字段
ReentrantLock lock = new ReentrantLock();
}

随后,写一个方法模拟在购物车进行商品选购,每次从商品清单(items 字段)中随机选购三个商品(为了逻辑简单,我们不考虑每次选购多个同类商品的逻辑,购物车中不体现商品数量):

private List createCart() {
return IntStream.rangeClosed(1, 3)
.mapToObj(i -> “item” + ThreadLocalRandom.current().nextInt(items.size()))
.map(name -> items.get(name)).collect(Collectors.toList());
}

下单代码如下:先声明一个 List 来保存所有获得的锁,然后遍历购物车中的商品依次尝试获得商品的锁,最长等待 10 秒,获得全部锁之后再扣减库存;如果有无法获得锁的情况则解锁之前获得的所有锁,返回 false 下单失败。

private boolean createOrder(List order) {
//存放所有获得的锁
List locks = new ArrayList<>();

for (Item item : order) {  
    try {  
        //获得锁 10 秒超时  
        if (item.lock.tryLock(10, TimeUnit.SECONDS)) {  
            locks.add(item.lock);  
        } else {  
            locks.forEach(ReentrantLock::unlock);  
            return false;  
        }  
    } catch (InterruptedException e) {  
    }  
}  
//锁全部拿到之后执行扣减库存业务逻辑  
try {  
    order.forEach(item -> item.remaining--);  
} finally {  
    locks.forEach(ReentrantLock::unlock);  
}  
return true;  

}

我们写一段代码测试这个下单操作。模拟在多线程情况下进行 100 次创建购物车和下单操作,最后通过日志输出成功的下单次数、总剩余的商品个数、100 次下单耗时,以及下单完成后的商品库存明细:

@GetMapping(“wrong”)
public long wrong() {
long begin = System.currentTimeMillis();
//并发进行 100 次下单操作,统计成功次数
long success = IntStream.rangeClosed(1, 100).parallel()
.mapToObj(i -> {
List cart = createCart();
return createOrder(cart);
})
.filter(result -> result)
.count();
log.info(“success:{} totalRemaining:{} took:{}ms items:{}”,
success,
items.entrySet().stream().map(item -> item.getValue().remaining).reduce(0, Integer::sum),
System.currentTimeMillis() - begin, items);
return success;
}

运行程序,输出如下日志:

可以看到,100 次下单操作成功了 65 次,10 种商品总计 10000 件,库存总计为 9805,消耗了 195 件符合预期(65 次下单成功,每次下单包含三件商品),总耗时 50 秒。

为什么会这样呢?

使用 JDK 自带的 VisualVM 工具来跟踪一下,重新执行方法后不久就可以看到,线程 Tab 中提示了死锁问题,根据提示点击右侧线程 Dump 按钮进行线程抓取操作:

查看抓取出的线程栈,在页面中部可以看到如下日志:

显然,是出现了死锁,线程 4 在等待的一个锁被线程 3 持有,线程 3 在等待的另一把锁被线程 4 持有

那为什么会有死锁问题呢?

我们仔细回忆一下购物车添加商品的逻辑,随机添加了三种商品,假设一个购物车中的商品是 item1 和 item2,另一个购物车中的商品是 item2 和 item1,一个线程先获取到了 item1 的锁,同时另一个线程获取到了 item2 的锁,然后两个线程接下来要分别获取 item2 和 item1 的锁,这个时候锁已经被对方获取了,只能相互等待一直到 10 秒超时。

其实,避免死锁的方案很简单,为购物车中的商品排一下序,让所有的线程一定是先获取 item1 的锁然后获取 item2 的锁,就不会有问题了。所以,我只需要修改一行代码,对 createCart 获得的购物车按照商品名进行排序即可:

@GetMapping(“right”)
public long right() {

.
long success = IntStream.rangeClosed(1, 100).parallel()
.mapToObj(i -> {
List cart = createCart().stream()
.sorted(Comparator.comparing(Item::getName))
.collect(Collectors.toList());
return createOrder(cart);
})
.filter(result -> result)
.count();

return success;
}

测试一下 right 方法,不管执行多少次都是 100 次成功下单,而且性能相当高,达到了 3000 以上的 TPS:

这个案例中,虽然产生了死锁问题,但因为尝试获取锁的操作并不是无限阻塞的,所以没有造成永久死锁,之后的改进就是避免循环等待,通过对购物车的商品进行排序来实现有顺序的加锁,避免循环等待。

重点回顾

我们一起总结回顾下,使用锁来解决多线程情况下线程安全问题的坑吧。

第一,使用 synchronized 加锁虽然简单,但我们首先要弄清楚共享资源是类还是实例级别的、会被哪些线程操作,synchronized 关联的锁对象或方法又是什么范围的。

第二,加锁尽可能要考虑粒度和场景,锁保护的代码意味着无法进行多线程操作。对于 Web 类型的天然多线程项目,对方法进行大范围加锁会显著降级并发能力,要考虑尽可能地只为必要的代码块加锁,降低锁的粒度;而对于要求超高性能的业务,还要细化考虑锁的读写场景,以及悲观优先还是乐观优先,尽可能针对明确场景精细化加锁方案,可以在适当的场景下考虑使用 ReentrantReadWriteLock、StampedLock 等高级的锁工具类。

第三,业务逻辑中有多把锁时要考虑死锁问题,通常的规避方案是,避免无限等待和循环等待。

此外,如果业务逻辑中锁的实现比较复杂的话,要仔细看看加锁和释放是否配对,是否有遗漏释放或重复释放的可能性;并且要考虑锁自动超时释放了,而业务逻辑却还在进行的情况下,如果别的线线程或进程拿到了相同的锁,可能会导致重复执行

为演示方便,今天的案例是在 Controller 的逻辑中开新的线程或使用线程池进行并发模拟,我们当然可以意识到哪些对象是并发操作的。但对于 Web 应用程序的天然多线程场景,你可能更容易忽略这点,并且也可能因为误用锁降低应用整体的吞吐。如果你的业务代码涉及复杂的锁操作,强烈建议 Mock 相关外部接口或数据库操作后对应用代码进行压测,通过压测排除锁误用带来的性能问题和死锁问题

今天用到的代码,我都放在了 GitHub 上,你可以点击这个链接查看。

思考与讨论

  1. 本文开头的例子里,变量 a、b 都使用了 volatile 关键字,你知道原因吗?我之前遇到过这样一个坑:我们开启了一个线程无限循环来跑一些任务,有一个 bool 类型的变量来控制循环的退出,默认为 true 代表执行,一段时间后主线程将这个变量设置为了 false。如果这个变量不是 volatile 修饰的,子线程可以退出吗?你能否解释其中的原因呢?
  2. 文末我们又提了两个坑,一是加锁和释放没有配对的问题,二是锁自动释放导致的重复逻辑执行的问题。你有什么方法来发现和解决这两种问题吗?

在使用锁的过程中,你还遇到过其他坑吗?我是朱晔,欢迎在评论区与我留言分享你的想法,也欢迎你把这篇文章分享给你的朋友或同事,一起交流。