你好,我是刘超。

集合作为一种存储数据的容器,是我们日常开发中使用最频繁的对象类型之一。JDK 为开发者提供了一系列的集合类型,这些集合类型使用不同的数据结构来实现。因此,不同的集合类型,使用场景也不同。

很多同学在面试的时候,经常会被问到集合的相关问题,比较常见的有 ArrayList 和 LinkedList 的区别。

相信大部分同学都能回答上:“ArrayList 是基于数组实现,LinkedList 是基于链表实现。”

而在回答使用场景的时候,我发现大部分同学的答案是:“ArrayList 和 LinkedList 在新增、删除元素时,LinkedList 的效率要高于 ArrayList,而在遍历的时候,ArrayList 的效率要高于 LinkedList。”这个回答是否准确呢?今天这一讲就带你验证。

初识 List 接口

在学习 List 集合类之前,我们先来通过这张图,看下 List 集合类的接口和类的实现关系:

我们可以看到 ArrayList、Vector、LinkedList 集合类继承了 AbstractList 抽象类,而 AbstractList 实现了 List 接口,同时也继承了 AbstractCollection 抽象类。ArrayList、Vector、LinkedList 又根据自我定位,分别实现了各自的功能。

ArrayList 和 Vector 使用了数组实现,这两者的实现原理差不多,LinkedList 使用了双向链表实现。基础铺垫就到这里,接下来,我们就详细地分析下 ArrayList 和 LinkedList 的源码实现。

ArrayList 是如何实现的?

ArrayList 很常用,先来几道测试题,自检下你对 ArrayList 的了解程度。

**问题 1:**我们在查看 ArrayList 的实现类源码时,你会发现对象数组 elementData 使用了 transient 修饰,我们知道 transient 关键字修饰该属性,则表示该属性不会被序列化,然而我们并没有看到文档中说明 ArrayList 不能被序列化,这是为什么?

**问题 2:**我们在使用 ArrayList 进行新增、删除时,经常被提醒“使用 ArrayList 做新增删除操作会影响效率”。那是不是 ArrayList 在大量新增元素的场景下效率就一定会变慢呢?

**问题 3:**如果让你使用 for 循环以及迭代循环遍历一个 ArrayList,你会使用哪种方式呢?原因是什么?

如果你对这几道测试都没有一个全面的了解,那就跟我一起从数据结构、实现原理以及源码角度重新认识下 ArrayList 吧。

1.ArrayList 实现类

ArrayList 实现了 List 接口,继承了 AbstractList 抽象类,底层是数组实现的,并且实现了自增扩容数组大小。

ArrayList 还实现了 Cloneable 接口和 Serializable 接口,所以他可以实现克隆和序列化。

ArrayList 还实现了 RandomAccess 接口。你可能对这个接口比较陌生,不知道具体的用处。通过代码我们可以发现,这个接口其实是一个空接口,什么也没有实现,那 ArrayList 为什么要去实现它呢?

其实 RandomAccess 接口是一个标志接口,他标志着“只要实现该接口的 List 类,都能实现快速随机访问”。

1
2
3
4

public class ArrayList<E> extends AbstractList<E>

        implements List<E>, RandomAccess, Cloneable, java.io.Serializable

2.ArrayList 属性

ArrayList 属性主要由数组长度 size、对象数组 elementData、初始化容量 default_capacity 等组成,其中初始化容量默认大小为 10。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

  // 默认初始化容量

    private static final int DEFAULT_CAPACITY = 10;

    // 对象数组

    transient Object[] elementData; 

    // 数组长度

    private int size;

从 ArrayList 属性来看,它没有被任何的多线程关键字修饰,但 elementData 被关键字 transient 修饰了。这就是我在上面提到的第一道测试题:transient 关键字修饰该字段则表示该属性不会被序列化,但 ArrayList 其实是实现了序列化接口,这到底是怎么回事呢?

这还得从“ArrayList 是基于数组实现“开始说起,由于 ArrayList 的数组是基于动态扩增的,所以并不是所有被分配的内存空间都存储了数据。

如果采用外部序列化法实现数组的序列化,会序列化整个数组。ArrayList 为了避免这些没有存储数据的内存空间被序列化,内部提供了两个私有方法 writeObject 以及 readObject 来自我完成序列化与反序列化,从而在序列化与反序列化数组时节省了空间和时间。

因此使用 transient 修饰数组,是防止对象数组被其他外部方法序列化。

3.ArrayList 构造函数

ArrayList 类实现了三个构造函数,第一个是创建 ArrayList 对象时,传入一个初始化值;第二个是默认创建一个空数组对象;第三个是传入一个集合类型进行初始化。

当 ArrayList 新增元素时,如果所存储的元素已经超过其已有大小,它会计算元素大小后再进行动态扩容,数组的扩容会导致整个数组进行一次内存复制。因此,我们在初始化 ArrayList 时,可以通过第一个构造函数合理指定数组初始大小,这样有助于减少数组的扩容次数,从而提高系统性能。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

 public ArrayList(int initialCapacity) {

        // 初始化容量不为零时,将根据初始化值创建数组大小

        if (initialCapacity > 0) {

            this.elementData = new Object[initialCapacity];

        } else if (initialCapacity == 0) {// 初始化容量为零时,使用默认的空数组

            this.elementData = EMPTY_ELEMENTDATA;

        } else {

            throw new IllegalArgumentException("Illegal Capacity: "+

                                               initialCapacity);

        }

    }

     public ArrayList() {

        // 初始化默认为空数组

        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;

    }

4.ArrayList 新增元素

ArrayList 新增元素的方法有两种,一种是直接将元素加到数组的末尾,另外一种是添加元素到任意位置。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

 public boolean add(E e) {

        ensureCapacityInternal(size + 1);  // Increments modCount!!

        elementData[size++] = e;

        return true;

    }

     public void add(int index, E element) {

        rangeCheckForAdd(index);

         ensureCapacityInternal(size + 1);  // Increments modCount!!

        System.arraycopy(elementData, index, elementData, index + 1,

                         size - index);

        elementData[index] = element;

        size++;

    }

两个方法的相同之处是在添加元素之前,都会先确认容量大小,如果容量够大,就不用进行扩容;如果容量不够大,就会按照原来数组的 1.5 倍大小进行扩容,在扩容之后需要将数组复制到新分配的内存地址。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

  private void ensureExplicitCapacity(int minCapacity) {

        modCount++;

         // overflow-conscious code

        if (minCapacity - elementData.length > 0)

            grow(minCapacity);

    }

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

     private void grow(int minCapacity) {

        // overflow-conscious code

        int oldCapacity = elementData.length;

        int newCapacity = oldCapacity + (oldCapacity >> 1);

        if (newCapacity - minCapacity < 0)

            newCapacity = minCapacity;

        if (newCapacity - MAX_ARRAY_SIZE > 0)

            newCapacity = hugeCapacity(minCapacity);

        // minCapacity is usually close to size, so this is a win:

        elementData = Arrays.copyOf(elementData, newCapacity);

    }

当然,两个方法也有不同之处,添加元素到任意位置,会导致在该位置后的所有元素都需要重新排列,而将元素添加到数组的末尾,在没有发生扩容的前提下,是不会有元素复制排序过程的。

这里你就可以找到第二道测试题的答案了。如果我们在初始化时就比较清楚存储数据的大小,就可以在 ArrayList 初始化时指定数组容量大小,并且在添加元素时,只在数组末尾添加元素,那么 ArrayList 在大量新增元素的场景下,性能并不会变差,反而比其他 List 集合的性能要好。

5.ArrayList 删除元素

ArrayList 的删除方法和添加任意位置元素的方法是有些相同的。ArrayList 在每一次有效的删除元素操作之后,都要进行数组的重组,并且删除的元素位置越靠前,数组重组的开销就越大。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

 public E remove(int index) {

        rangeCheck(index);

         modCount++;

        E oldValue = elementData(index);

         int numMoved = size - index - 1;

        if (numMoved > 0)

            System.arraycopy(elementData, index+1, elementData, index,

                             numMoved);

        elementData[--size] = null; // clear to let GC do its work

         return oldValue;

    }

6.ArrayList 遍历元素

由于 ArrayList 是基于数组实现的,所以在获取元素的时候是非常快捷的。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

  public E get(int index) {

        rangeCheck(index);

         return elementData(index);

    }

     E elementData(int index) {

        return (E) elementData[index];

    }

LinkedList 是如何实现的?

虽然 LinkedList 与 ArrayList 都是 List 类型的集合,但 LinkedList 的实现原理却和 ArrayList 大相径庭,使用场景也不太一样。

LinkedList 是基于双向链表数据结构实现的,LinkedList 定义了一个 Node 结构,Node 结构中包含了 3 个部分:元素内容 item、前指针 prev 以及后指针 next,代码如下。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

 private static class Node<E> {

        E item;

        Node<E> next;

        Node<E> prev;

         Node(Node<E> prev, E element, Node<E> next) {

            this.item = element;

            this.next = next;

            this.prev = prev;

        }

    }

总结一下,LinkedList 就是由 Node 结构对象连接而成的一个双向链表。在 JDK1.7 之前,LinkedList 中只包含了一个 Entry 结构的 header 属性,并在初始化的时候默认创建一个空的 Entry,用来做 header,前后指针指向自己,形成一个循环双向链表。

在 JDK1.7 之后,LinkedList 做了很大的改动,对链表进行了优化。链表的 Entry 结构换成了 Node,内部组成基本没有改变,但 LinkedList 里面的 header 属性去掉了,新增了一个 Node 结构的 first 属性和一个 Node 结构的 last 属性。这样做有以下几点好处:

  • first/last 属性能更清晰地表达链表的链头和链尾概念;
  • first/last 方式可以在初始化 LinkedList 的时候节省 new 一个 Entry;
  • first/last 方式最重要的性能优化是链头和链尾的插入删除操作更加快捷了。

这里同 ArrayList 的讲解一样,我将从数据结构、实现原理以及源码分析等几个角度带你深入了解 LinkedList。

1.LinkedList 实现类

LinkedList 类实现了 List 接口、Deque 接口,同时继承了 AbstractSequentialList 抽象类,LinkedList 既实现了 List 类型又有 Queue 类型的特点;LinkedList 也实现了 Cloneable 和 Serializable 接口,同 ArrayList 一样,可以实现克隆和序列化。

由于 LinkedList 存储数据的内存地址是不连续的,而是通过指针来定位不连续地址,因此,LinkedList 不支持随机快速访问,LinkedList 也就不能实现 RandomAccess 接口。

1
2
3
4
5
6

public class LinkedList<E>

    extends AbstractSequentialList<E>

    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

2.LinkedList 属性

我们前面讲到了 LinkedList 的两个重要属性 first/last 属性,其实还有一个 size 属性。我们可以看到这三个属性都被 transient 修饰了,原因很简单,我们在序列化的时候不会只对头尾进行序列化,所以 LinkedList 也是自行实现 readObject 和 writeObject 进行序列化与反序列化。

1
2
3
4
5
6

  transient int size = 0;

    transient Node<E> first;

    transient Node<E> last;

3.LinkedList 新增元素

LinkedList 添加元素的实现很简洁,但添加的方式却有很多种。默认的 add (Ee) 方法是将添加的元素加到队尾,首先是将 last 元素置换到临时变量中,生成一个新的 Node 节点对象,然后将 last 引用指向新节点对象,之前的 last 对象的前指针指向新节点对象。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

 public boolean add(E e) {

        linkLast(e);

        return true;

    }

     void linkLast(E e) {

        final Node<E> l = last;

        final Node<E> newNode = new Node<>(l, e, null);

        last = newNode;

        if (l == null)

            first = newNode;

        else

            l.next = newNode;

        size++;

        modCount++;

    }

LinkedList 也有添加元素到任意位置的方法,如果我们是将元素添加到任意两个元素的中间位置,添加元素操作只会改变前后元素的前后指针,指针将会指向添加的新元素,所以相比 ArrayList 的添加操作来说,LinkedList 的性能优势明显。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 public void add(int index, E element) {

        checkPositionIndex(index);

         if (index == size)

            linkLast(element);

        else

            linkBefore(element, node(index));

    }

     void linkBefore(E e, Node<E> succ) {

        // assert succ != null;

        final Node<E> pred = succ.prev;

        final Node<E> newNode = new Node<>(pred, e, succ);

        succ.prev = newNode;

        if (pred == null)

            first = newNode;

        else

            pred.next = newNode;

        size++;

        modCount++;

    }

4.LinkedList 删除元素

在 LinkedList 删除元素的操作中,我们首先要通过循环找到要删除的元素,如果要删除的位置处于 List 的前半段,就从前往后找;若其位置处于后半段,就从后往前找。

这样做的话,无论要删除较为靠前或较为靠后的元素都是非常高效的,但如果 List 拥有大量元素,移除的元素又在 List 的中间段,那效率相对来说会很低。

5.LinkedList 遍历元素

LinkedList 的获取元素操作实现跟 LinkedList 的删除元素操作基本类似,通过分前后半段来循环查找到对应的元素。但是通过这种方式来查询元素是非常低效的,特别是在 for 循环遍历的情况下,每一次循环都会去遍历半个 List。

所以在 LinkedList 循环遍历时,我们可以使用 iterator 方式迭代循环,直接拿到我们的元素,而不需要通过循环查找 List。

总结

前面我们已经从源码的实现角度深入了解了 ArrayList 和 LinkedList 的实现原理以及各自的特点。如果你能充分理解这些内容,很多实际应用中的相关性能问题也就迎刃而解了。

就像如果现在还有人跟你说,“ArrayList 和 LinkedList 在新增、删除元素时,LinkedList 的效率要高于 ArrayList,而在遍历的时候,ArrayList 的效率要高于 LinkedList”,你还会表示赞同吗?

现在我们不妨通过几组测试来验证一下。这里因为篇幅限制,所以我就直接给出测试结果了,对应的测试代码你可以访问Github查看和下载。

1.ArrayList 和 LinkedList 新增元素操作测试

  • 从集合头部位置新增元素
  • 从集合中间位置新增元素
  • 从集合尾部位置新增元素

测试结果 (花费时间):

  • ArrayList>LinkedList
  • ArrayList<LinkedList
  • ArrayList<LinkedList

通过这组测试,我们可以知道 LinkedList 添加元素的效率未必要高于 ArrayList。

由于 ArrayList 是数组实现的,而数组是一块连续的内存空间,在添加元素到数组头部的时候,需要对头部以后的数据进行复制重排,所以效率很低;而 LinkedList 是基于链表实现,在添加元素的时候,首先会通过循环查找到添加元素的位置,如果要添加的位置处于 List 的前半段,就从前往后找;若其位置处于后半段,就从后往前找。因此 LinkedList 添加元素到头部是非常高效的。

同上可知,ArrayList 在添加元素到数组中间时,同样有部分数据需要复制重排,效率也不是很高;LinkedList 将元素添加到中间位置,是添加元素最低效率的,因为靠近中间位置,在添加元素之前的循环查找是遍历元素最多的操作。

而在添加元素到尾部的操作中,我们发现,在没有扩容的情况下,ArrayList 的效率要高于 LinkedList。这是因为 ArrayList 在添加元素到尾部的时候,不需要复制重排数据,效率非常高。而 LinkedList 虽然也不用循环查找元素,但 LinkedList 中多了 new 对象以及变换指针指向对象的过程,所以效率要低于 ArrayList。

说明一下,这里我是基于 ArrayList 初始化容量足够,排除动态扩容数组容量的情况下进行的测试,如果有动态扩容的情况,ArrayList 的效率也会降低。

2.ArrayList 和 LinkedList 删除元素操作测试

  • 从集合头部位置删除元素
  • 从集合中间位置删除元素
  • 从集合尾部位置删除元素

测试结果 (花费时间):

  • ArrayList>LinkedList
  • ArrayList<LinkedList
  • ArrayList<LinkedList

ArrayList 和 LinkedList 删除元素操作测试的结果和添加元素操作测试的结果很接近,这是一样的原理,我在这里就不重复讲解了。

3.ArrayList 和 LinkedList 遍历元素操作测试

  • for(;;) 循环
  • 迭代器迭代循环

测试结果 (花费时间):

  • ArrayList<LinkedList
  • ArrayList≈LinkedList

我们可以看到,LinkedList 的 for 循环性能是最差的,而 ArrayList 的 for 循环性能是最好的。

这是因为 LinkedList 基于链表实现的,在使用 for 循环的时候,每一次 for 循环都会去遍历半个 List,所以严重影响了遍历的效率;ArrayList 则是基于数组实现的,并且实现了 RandomAccess 接口标志,意味着 ArrayList 可以实现快速随机访问,所以 for 循环效率非常高。

LinkedList 的迭代循环遍历和 ArrayList 的迭代循环遍历性能相当,也不会太差,所以在遍历 LinkedList 时,我们要切忌使用 for 循环遍历。

思考题

我们通过一个使用 for 循环遍历删除操作 ArrayList 数组的例子,思考下 ArrayList 数组的删除操作应该注意的一些问题。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public static void main(String[] args)

    {

        ArrayList<String> list = new ArrayList<String>();

        list.add("a");

        list.add("a");

        list.add("b");

        list.add("b");

        list.add("c");

        list.add("c");

        remove(list);// 删除指定的“b”元素

         for(int i=0; i<list.size(); i++)("c")()()(s : list) 

        {

            System.out.println("element : " + s)list.get(i)

        }

    }

从上面的代码来看,我定义了一个 ArrayList 数组,里面添加了一些元素,然后我通过 remove 删除指定的元素。请问以下两种写法,哪种是正确的?

写法 1:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

public static void remove(ArrayList<String> list) 

    {

        Iterator<String> it = list.iterator();

                while (it.hasNext()) {

            String str = it.next();
            

            if (str.equals("b")) {

                it.remove();

            }

        }

     }

写法 2:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

public static void remove(ArrayList<String> list) 

    {

        for (String s : list)

        {

            if (s.equals("b")) 

            {

                list.remove(s);

            }

        }

    }

期待在留言区看到你的答案。也欢迎你点击“请朋友读”,把今天的内容分享给身边的朋友,邀请他一起学习。

unpreview