你好,我是刘超。

今天的分享也是从案例开始。我们团队曾经遇到过一个非常严重的线上事故,在一次 DBA 完成单台数据库线上补丁后,系统偶尔会出现异常报警,我们的开发工程师很快就定位到了数据库异常问题。

具体情况是这样的,当玩家购买道具之后,扣除通宝时出现了异常。这种异常在正常情况下发生之后,应该是整个购买操作都需要撤销,然而这次异常的严重性就是在于玩家购买道具成功后,没有扣除通宝。

究其原因是由于购买的道具更新的是游戏数据库,而通宝是在用户账户中心数据库,在一次购买道具时,存在同时操作两个数据库的情况,属于一种分布式事务。而我们的工程师在完成玩家获得道具和扣除余额的操作时,没有做到事务的一致性,即在扣除通宝失败时,应该回滚已经购买的游戏道具。

从这个案例中,我想你应该意识到了分布式事务的重要性。

如今,大部分公司的服务基本都实现了微服务化,首先是业务需求,为了解耦业务;其次是为了减少业务与业务之间的相互影响。

电商系统亦是如此,大部分公司的电商系统都是分为了不同服务模块,例如商品模块、订单模块、库存模块等等。事实上,分解服务是一把双刃剑,可以带来一些开发、性能以及运维上的优势,但同时也会增加业务开发的逻辑复杂度。其中最为突出的就是分布式事务了。

通常,存在分布式事务的服务架构部署有以下两种:同服务不同数据库,不同服务不同数据库。我们以商城为例,用图示说明下这两种部署:

通常,我们都是基于第二种架构部署实现的,那我们应该如何实现在这种服务架构下,有关订单提交业务的分布式事务呢?

分布式事务解决方案

我们讲过,在单个数据库的情况下,数据事务操作具有 ACID 四个特性,但如果在一个事务中操作多个数据库,则无法使用数据库事务来保证一致性。

也就是说,当两个数据库操作数据时,可能存在一个数据库操作成功,而另一个数据库操作失败的情况,我们无法通过单个数据库事务来回滚两个数据操作。

而分布式事务就是为了解决在同一个事务下,不同节点的数据库操作数据不一致的问题。在一个事务操作请求多个服务或多个数据库节点时,要么所有请求成功,要么所有请求都失败回滚回去。通常,分布式事务的实现有多种方式,例如 XA 协议实现的二阶提交(2PC)、三阶提交 (3PC),以及 TCC 补偿性事务。

在了解 2PC 和 3PC 之前,我们有必要先来了解下 XA 协议。XA 协议是由 X/Open 组织提出的一个分布式事务处理规范,目前 MySQL 中只有 InnoDB 存储引擎支持 XA 协议。

1. XA 规范

在 XA 规范之前,存在着一个 DTP 模型,该模型规范了分布式事务的模型设计。

DTP 规范中主要包含了 AP、RM、TM 三个部分,其中 AP 是应用程序,是事务发起和结束的地方;RM 是资源管理器,主要负责管理每个数据库的连接数据源;TM 是事务管理器,负责事务的全局管理,包括事务的生命周期管理和资源的分配协调等。

XA 则规范了 TM 与 RM 之间的通信接口,在 TM 与多个 RM 之间形成一个双向通信桥梁,从而在多个数据库资源下保证 ACID 四个特性。

这里强调一下,JTA 是基于 XA 规范实现的一套 Java 事务编程接口,是一种两阶段提交事务。我们可以通过源码简单了解下 JTA 实现的多数据源事务提交。

2. 二阶提交和三阶提交

XA 规范实现的分布式事务属于二阶提交事务,顾名思义就是通过两个阶段来实现事务的提交。

在第一阶段,应用程序向事务管理器(TM)发起事务请求,而事务管理器则会分别向参与的各个资源管理器(RM)发送事务预处理请求(Prepare),此时这些资源管理器会打开本地数据库事务,然后开始执行数据库事务,但执行完成后并不会立刻提交事务,而是向事务管理器返回已就绪(Ready)或未就绪(Not Ready)状态。如果各个参与节点都返回状态了,就会进入第二阶段。

到了第二阶段,如果资源管理器返回的都是就绪状态,事务管理器则会向各个资源管理器发送提交(Commit)通知,资源管理器则会完成本地数据库的事务提交,最终返回提交结果给事务管理器。

在第二阶段中,如果任意资源管理器返回了未就绪状态,此时事务管理器会向所有资源管理器发送事务回滚(Rollback)通知,此时各个资源管理器就会回滚本地数据库事务,释放资源,并返回结果通知。

但事实上,二阶事务提交也存在一些缺陷。

第一,在整个流程中,我们会发现各个资源管理器节点存在阻塞,只有当所有的节点都准备完成之后,事务管理器才会发出进行全局事务提交的通知,这个过程如果很长,则会有很多节点长时间占用资源,从而影响整个节点的性能。

一旦资源管理器挂了,就会出现一直阻塞等待的情况。类似问题,我们可以通过设置事务超时时间来解决。

第二,仍然存在数据不一致的可能性,例如,在最后通知提交全局事务时,由于网络故障,部分节点有可能收不到通知,由于这部分节点没有提交事务,就会导致数据不一致的情况出现。

而三阶事务(3PC)的出现就是为了减少此类问题的发生。

3PC 把 2PC 的准备阶段分为了准备阶段和预处理阶段,在第一阶段只是询问各个资源节点是否可以执行事务,而在第二阶段,所有的节点反馈可以执行事务,才开始执行事务操作,最后在第三阶段执行提交或回滚操作。并且在事务管理器和资源管理器中都引入了超时机制,如果在第三阶段,资源节点一直无法收到来自资源管理器的提交或回滚请求,它就会在超时之后,继续提交事务。

所以 3PC 可以通过超时机制,避免管理器挂掉所造成的长时间阻塞问题,但其实这样还是无法解决在最后提交全局事务时,由于网络故障无法通知到一些节点的问题,特别是回滚通知,这样会导致事务等待超时从而默认提交。

3. 事务补偿机制(TCC)

以上这种基于 XA 规范实现的事务提交,由于阻塞等性能问题,有着比较明显的低性能、低吞吐的特性。所以在抢购活动中使用该事务,很难满足系统的并发性能。

除了性能问题,JTA 只能解决同一服务下操作多数据源的分布式事务问题,换到微服务架构下,可能存在同一个事务操作,分别在不同服务上连接数据源,提交数据库操作。

而 TCC 正是为了解决以上问题而出现的一种分布式事务解决方案。TCC 采用最终一致性的方式实现了一种柔性分布式事务,与 XA 规范实现的二阶事务不同的是,TCC 的实现是基于服务层实现的一种二阶事务提交。

TCC 分为三个阶段,即 Try、Confirm、Cancel 三个阶段。

  • Try 阶段:主要尝试执行业务,执行各个服务中的 Try 方法,主要包括预留操作;
  • Confirm 阶段:确认 Try 中的各个方法执行成功,然后通过 TM 调用各个服务的 Confirm 方法,这个阶段是提交阶段;
  • Cancel 阶段:当在 Try 阶段发现其中一个 Try 方法失败,例如预留资源失败、代码异常等,则会触发 TM 调用各个服务的 Cancel 方法,对全局事务进行回滚,取消执行业务。

以上执行只是保证 Try 阶段执行时成功或失败的提交和回滚操作,你肯定会想到,如果在 Confirm 和 Cancel 阶段出现异常情况,那 TCC 该如何处理呢?此时 TCC 会不停地重试调用失败的 Confirm 或 Cancel 方法,直到成功为止。

但 TCC 补偿性事务也有比较明显的缺点,那就是对业务的侵入性非常大。

首先,我们需要在业务设计的时候考虑预留资源;然后,我们需要编写大量业务性代码,例如 Try、Confirm、Cancel 方法;最后,我们还需要为每个方法考虑幂等性。这种事务的实现和维护成本非常高,但综合来看,这种实现是目前大家最常用的分布式事务解决方案。

4. 业务无侵入方案——Seata(Fescar)

Seata 是阿里去年开源的一套分布式事务解决方案,开源一年多已经有一万多 star 了,可见受欢迎程度非常之高。

Seata 的基础建模和 DTP 模型类似,只不过前者是将事务管理器分得更细了,抽出一个事务协调器(Transaction Coordinator 简称 TC),主要维护全局事务的运行状态,负责协调并驱动全局事务的提交或回滚。而 TM 则负责开启一个全局事务,并最终发起全局提交或全局回滚的决议。如下图所示:

按照Github中的说明介绍,整个事务流程为:

  • TM 向 TC 申请开启一个全局事务,全局事务创建成功并生成一个全局唯一的 XID;
  • XID 在微服务调用链路的上下文中传播;
  • RM 向 TC 注册分支事务,将其纳入 XID 对应全局事务的管辖;
  • TM 向 TC 发起针对 XID 的全局提交或回滚决议;
  • TC 调度 XID 下管辖的全部分支事务完成提交或回滚请求。

Seata 与其它分布式最大的区别在于,它在第一提交阶段就已经将各个事务操作 commit 了。Seata 认为在一个正常的业务下,各个服务提交事务的大概率是成功的,这种事务提交操作可以节约两个阶段持有锁的时间,从而提高整体的执行效率。

那如果在第一阶段就已经提交了事务,那我们还谈何回滚呢?

Seata 将 RM 提升到了服务层,通过 JDBC 数据源代理解析 SQL,把业务数据在更新前后的数据镜像组织成回滚日志,利用本地事务的 ACID 特性,将业务数据的更新和回滚日志的写入在同一个本地事务中提交。

如果 RM 决议要全局回滚,会通知 RM 进行回滚操作,通过 XID 找到对应的回滚日志记录,通过回滚记录生成反向更新 SQL,进行更新回滚操作。

以上我们可以保证一个事务的原子性和一致性,但隔离性如何保证呢?

Seata 设计通过事务协调器维护的全局写排它锁,来保证事务间的写隔离,而读写隔离级别则默认为未提交读的隔离级别。

总结

在同服务多数据源操作不同数据库的情况下,我们可以使用基于 XA 规范实现的分布式事务,在 Spring 中有成熟的 JTA 框架实现了 XA 规范的二阶事务提交。事实上,二阶事务除了性能方面存在严重的阻塞问题之外,还有可能导致数据不一致,我们应该慎重考虑使用这种二阶事务提交。

在跨服务的分布式事务下,我们可以考虑基于 TCC 实现的分布式事务,常用的中间件有 TCC-Transaction。TCC 也是基于二阶事务提交原理实现的,但 TCC 的二阶事务提交是提到了服务层实现。TCC 方式虽然提高了分布式事务的整体性能,但也给业务层带来了非常大的工作量,对应用服务的侵入性非常强,但这是大多数公司目前所采用的分布式事务解决方案。

Seata 是一种高效的分布式事务解决方案,设计初衷就是解决分布式带来的性能问题以及侵入性问题。但目前 Seata 的稳定性有待验证,例如,在 TC 通知 RM 开始提交事务后,TC 与 RM 的连接断开了,或者 RM 与数据库的连接断开了,都不能保证事务的一致性。

思考题

Seata 在第一阶段已经提交了事务,那如果在第二阶段发生了异常要回滚到 Before 快照前,别的线程若是更新了数据,且业务走完了,那么恢复的这个快照不就是脏数据了吗?但事实上,Seata 是不会出现这种情况的,你知道它是怎么做到的吗?

期待在留言区看到你的答案。也欢迎你点击“请朋友读”,把今天的内容分享给身边的朋友,邀请他一起讨论。

unpreview