21性能优化的过程方法与求职面经总结
文章目录
经过前面的学习,你可能会发现,即使熟悉了开发中的各项技术和优化技巧,但在真正的性能优化场景下,自己依旧很难开展优化任务。其实这是因为你脑海里的知识杂乱无章,仅能靠回忆仅能完成片面的优化。
这时我通常都会在手边准备一份详细的提纲,这样在性能优化的时候,能够为我指明方向,并以完整的思维方式进行思考。
所以,今天我想向你总结一下性能优化的过程方法,希望能够在你进行性能分析,却没有头绪时也为你提供指引。
性能优化需要多方面权衡
应用性能低,有很多方面的因素,比如业务需求层面、架构设计层面、硬件/软件层面等,我们的专栏关注的主要是软件层面,但也不要忘记性能优化还有其他手段。
先举个业务需求层面的例子。有一个报表业务,查询非常缓慢,有时候甚至会造成内存溢出。经过分析,发现是查询时间跨度范围太大造成的。
由于业务上的限制,我们将时间跨度缩小至 1 个月之内之后,查询速度就快了很多。
再举一个硬件层面的例子。有一个定时任务,可以算是 CPU 密集型的,每次都将 CPU 用得满满的。由于系统有架构上的硬伤,无法做到横向扩容。技术经过评估,如果改造成按照数据分片执行的模式,则需要耗费长达 1 个月的工时。
其实在这种情况下,我们通过增加硬件配置的方式,便能解决性能瓶颈问题,为业务改进赢得更多的时间。
举这两个例子的目的是想要说明,性能优化有很多优化途径,如果这个性能问题可以通过其他方式解决,那就尽量不要采用调整软件代码的方式,我们尽可能地在效果、工时、手段这三方面之间进行权衡。
如何找到优化目标?
通常,关注一个硬件资源(比如 CPU),我们主要关注以下基本要素。
利用率: 一般是瞬时值,属于采样范围,用来判断有没有峰值,比如 CPU 使用率。
饱和度: 一般指资源是否被合理利用,能否用分担更多的工作。比如,饱和度过高,新请求在特定 queue 里排队;再比如,内存利用率过低、CPU 利用率过高,就可以考虑空间换时间。
错误信息: 错误一般发生在问题严重的情况下,需要特别关注。
联想信息: 对引起的原因进行猜测,并用更多的工具验证猜想,猜测影响因素并不一定是准确的,只是帮助我们分析问题,比如系统响应慢很可能是大量使用了 SWAP 导致的。
首先,我们需要找到性能优化的目标,我们依然从 CPU、内存、网络、I/O 等层面看一下性能瓶颈可能存在的匿藏之处。
1.CPU
查看 CPU 使用可以使用 top 命令,尤其注意它的负载(load)和使用率,vmstat 命令也可以看到系统的一些运行状况,我们这里关注上下文切换和 swap 分区的使用情况。
2.内存
内存可以使用 free 命令查看,尤其关注剩余内存的大小(free)。对于 Linux 系统来说,启动之后由于各种缓存和缓冲区的原因,系统内存会被迅速占满,所以我们更加关注的是 JVM 的内存。
top 命令的 RES 列,显示的就是进程实际占用的物理内存,这个值通常比 jmap 命令获取的堆内存要大,因为它还包含大量的堆外内存空间。
3.网络
iotop 可以看到占用网络流量最高的进程;通过 netstat 命令或者 ss 命令,能够看到当前机器上的网络连接汇总。在一些较底层的优化中,会涉及针对 mtu 的网络优化。
4.I/O
通过 iostat 命令,可以查看磁盘 I/O 的使用情况,如果利用率过高,就需要从使用源头找原因;类似 iftop,iotop 可以查看占用 I/O 最多的进程,很容易可以找到优化目标。
5.通用
lsof 命令可以查看当前进程所关联的所有资源;sysctl 命令可以查看当前系统内核的配置参数; dmesg 命令可以显示系统级别的一些信息,比如被操作系统的 oom-killer 杀掉的进程就可以在这里找到。
整理了一幅脑图,可供你参考:
常用工具集合
为了找到系统的问题,我们会采用类似于神农尝百草的方式,用多个工具、多种手段获取系统的运行状况。
1.信息收集
nmon 是一个可以输出系统整体性能数据的命令行工具,应用较为广泛。
jvisualvm 和 jmc,都是用来获取 Java 应用性能数据的工具。由于它们是 UI 工具,应用需要开启 JMX 端口才能够被远程连接。
2.监控
像 top 这样的命令,只在问题发生的时候才会有作用。但很多时候,当发生性能问题时,我们并不在电脑旁边,这就需要有一套工具,定期抓取这些性能数据。通过监控系统,能够获取监控指标的历史时序,通过分析指标趋势,可估算性能瓶颈点,从数据上支撑我们的分析。
目前最流行的组合是 prometheus + grafana + telegraf,可以搭功能强大的监控平台。
3.压测工具
有时候,我们需要评估系统在一定并发量下面的性能,这时候就可以通过压测工具给予系统一些压力。
wrk 是一个命令行工具,可以对 HTTP 接口进行压测;jmeter 是较为专业的压测工具,可以生成压测报告。压测工具配合监控工具,可以正确评估系统当前的性能。
4.性能深挖
大多数情况下,仅通过概括性的性能指标,我们无法知晓性能瓶颈的具体细节,这就需要一些比较深入的工具进行追踪。
skywalking 可以用来分析分布式环境下的调用链问题,可以详细地看到每一步执行的耗时。但如果你没有这样的环境,就可以使用命令行工具 arthas 对方法进行 trace,最终也能够深挖找到具体的慢逻辑。
jvm-profiling-tools,可以生成火焰图,辅助我们分析问题。另外,更加底层的,针对操作系统的性能测评和调优工具,还有perf和SystemTap,感兴趣的同学可以自行研究一下。
关于工具方面的内容,你可以回顾“04 | 工具实践:如何获取代码性能数据?”和“05|工具实践:基准测试 JMH,精确测量方法性能”进行回忆复习,我整理了一幅脑图,可供你参考。
基本解决方式
找到了具体的性能瓶颈点,就可以针对性地进行优化。
1.CPU 问题
CPU 是系统的核心资源,如果 CPU 有瓶颈,很多任务和线程就获取不到时间片,便会运行缓慢。如果此时系统的内存充足,就要考虑是否可以空间换时间,通过数据冗余和更优的算法来减少 CPU 的使用。
在 Linux 系统上,通过 top-Hp 便能容易地获取占用 CPU 最高的线程,进行针对性的优化。
资源的使用要细分,才能够进行专项优化。
我曾经碰见一个棘手的性能问题,线程都阻塞在 ForkJoin 线程池上,经过仔细排查才分析出,代码在等待耗时的 I/O 时,采用了并行流(parallelStrea)处理,但是 Java 默认的方式是所有使用并行流的地方,公用了一个通用的线程池,这个线程池的并行度只有 CPU 的两倍。所以请求量一增加,任务就会排队,造成积压。
2.内存问题
内存问题通常是 OOM 问题,可以参考“19 | 高级进阶:JVM 常见优化参数”进行优化。如果内存资源很紧张,CPU 利用率低,则可以考虑时间换空间的方式。
SWAP 分区使用硬盘来扩展可用内存的大小,但它的速度非常慢。一般在高并发的应用中,会把 SWAP 关掉,因为它很容易会引起卡顿。
3.I/O 问题
我们通常开发的业务系统,磁盘 I/O 负载都比较小,但网络 I/O 都比较繁忙。
当遇到磁盘 I/O 占用高的情况,就要考虑是否是日志打印得太多导致的。通过调整日志级别,或者清理无用的日志代码,便可缓解磁盘 I/O 的压力。
业务系统还会有大量的网络 I/O 操作,比如通过 RPC 调用一个远程的服务,我们期望使用 NIO 来减少一些无效的等待,或者使用并行来加快信息的获取。
还有一种情况,是类似于 ES 这样的数据库应用,数据写入本身,就会造成繁重的磁盘 I/O。这个时候,可以增加硬件的配置,比如换成 SSD 磁盘,或者增加新的磁盘。
数据库服务本身,也会提供非常多的参数,用来调优性能。根据“06 | 案例分析:缓冲区如何让代码加速”和“07 | 案例分析:无处不在的缓存,高并发系统的法宝”的描述,这部分的配置参数,主要影响缓冲和缓存的行为。
比如 ES 的 segment 块大小,translog 的刷新速度等,都可以被微调。举个例子,大量日志写入 ES 的时候,就可以通过增大 translog 写盘的间隔,来获得较大的性能提升。
4.网络问题
数据包在网络上传输,影响的主要因素就是结果集的大小。通过去除无用的信息,启用合理的压缩,可以获得较大的性能提升。
值得注意的是,这里的网络传输值得不仅仅是针对浏览器的,在服务间调用中也有着同样的情况。
比如,在 SpringBoot 的配置文件中,通过配置下面的参数,就可以开启 gzip。
|
|
但是,这个 SpringBoot 服务,通过 Feign 接口从另外一个服务获取信息,这个结果集并没有被压缩。可以通过替换 Feign 的底层网络工具为 OkHTTP,使用 OkHTTP 的透明压缩(默认开启 gzip),即可完成服务间调用的信息压缩,但很多同学容易忘掉这一环。我曾经调优果一个项目,将返回的数据包从9MB 压缩到300KB 左右,极大地减少了网络传输,节省了大约 500ms 的时间。
网络 I/O 的另外一个问题就是频繁的网络交互,通过将结果集合并,使用批量的方式,可以显著增加性能,但这种方式的使用场景有限,比较适合异步的任务处理。
使用 netstat 命令,或者 lsof 命令,可以获取进程所关联的,TIME_WAIT 和 CLOSE_WAIT 网络状态的数量,前者可以通过调整内核参数来解决,但后者多是应用程序的 BUG。
我整理了一幅脑图,可供你参考。
有了上面的信息收集和初步优化,我想你脑海里应该对要优化的系统已经有了非常详细的了解,是时候改变一些现有代码的设计了。
可以说如果上面的基本解决方式面向的是“面”,那么代码层面的优化,面向的就是具体的“性能瓶颈点”。
代码层面
代码层面的优化是我们课程的重点,我们花了非常大的篇幅在整个“模块三:实战案例与高频面试点”部分进行这方面的讲解,在这一课时我再简单地总结一下。
1.中间层
不同资源之间相互调用的性能瓶颈,主要在于资源的速度差异上。解决方式主要是加入一个中间层,有缓冲 / 缓存,以及池化这三种形态,以牺牲信息的时效性为代价,加快信息的处理速度。
缓冲,使得资源两方,都能按照自己的节奏进行操作的同时,也可以完全地顺序衔接起来。它能够消除两方的速度差异,以批量的方式,来减少性能损耗。
你可进入“06 | 案例分析:缓冲区如何让代码加速”进行回顾复习。
缓存,在系统中的应用非常广泛,有堆内缓存和分布式缓存之分。有些对性能要求非常高的场景,甚至会有多级缓存的组合形态。我们的目标是尽量提高缓存的命中率,以便中间层得其所用。
你可进入“07 | 案例分析:无处不在的缓存,高并发系统的法宝”进行回顾复习。
另一种中间层形态,就是对资源进行集中管控,以池化的思想来减少对象的创建成本。在对象的创建成本比较大时,才能体现到池化的价值,否则只会增加代码的复杂度。
你可进入“09 | 案例分析:池化对象的应用场景”进行回顾复习。
2.资源同步
在我们的编码中,有时候对数据的一致性要求比较高,就不得不用到锁和事务,不管是线程锁还是分布式锁,甚至是适合读多写少场景的乐观锁,都有一些通用的优化法则。
第一,切分冲突资源的粒度,这样就可以分而治之;
第二,减少资源锁定的时间,尽快释放共享资源;
第三,将读操作与写操作区分开,进一步减少冲突发生的可能。
普通的事务可以通过 Spring 的 @Transactional 注解简单的实现,但通常业务会涉及多个异构的资源。如无必要,非常不推荐使用分布式事务去解决,而应该采用最终一致性的思想,将互斥操作从资源层上移至业务层。
3.组织优化
另外一种有效的方式是通过重构,改变我们代码的组织结构。
通过设计模式,可以让我们的代码逻辑更加清晰,在性能优化的时候,可以直接定位到要优化的代码。我曾见过很多需要性能调优的应用代码,由于对象的关系复杂和代码组织的混乱,想要加入一个中间层是相当困难的。这个时候,首要的任务是梳理、重构这些代码,否则很难进行进一步的性能优化。
另外一个对编程模式影响较大的就是异步化。
异步化多采用生产者消费者模式,来减少同步等待造成的性能损耗,但它的编程模型难度较大,需要很多额外的工作。比如我们使用 MQ 完成了异步化,就不得不考虑消息失败、重复、死信等保障性功能(产品形态上的改变,不在讨论范围之内)。
4.资源利用不足
并不是说系统的资源利用率越低,我们的代码写得就越好。作为一个编码者,我们要想方设法压榨系统的剩余价值,让所有的资源都轮转起来。尤其在高并发场景下,这种轮转就更加重要——属于在一定压力下系统的最优状态。
资源不能合理的利用,就是一种浪费。比如,业务应用多属于 I/O 密集型业务,如果让请求都阻塞在 I/O 上,就造成了 CPU 资源的浪费。这时候使用并行,就可以在同一时刻承担更多的任务,并发量就能够增加;再比如,我们监控到 JVM 的堆空闲空间,长期处于高位,那就可以考虑加大堆内缓存的容量,或者缓冲区的容量。
我整理了一幅脑图,可供你参考。
PDCA 循环方法论
性能优化是一个循环的过程,需要根据数据反馈进行实时调整。有时候,测试结果表明,有些优化的效果并不好,就需要回滚到优化前的版本,重新寻找突破点。
如上图,PDCA 循环的方法论可以支持我们管理性能优化的过程,它有 4 个步骤:
P(Planning)计划阶段,找出存在的性能问题,收集性能指标信息,确定要改进的目标,准备达到这些目标的具体措施;
D(do)执行阶段,按照设计,将优化措施付诸实践;
C(check)检查阶段,及时检查优化的效果,及时发现改进过程中的经验及问题;
A(act)处理阶段,将成功的优化经验进行推广,由点及面进行覆盖,为负面影响提供解决方案,将错误的方法形成经验。
如此周而复始,应用的性能将会逐步提高,如下图,对于性能优化来说,就可以抽象成下面的方式。
既然叫作循环,就说明这个过程是可以重复执行的。事实上,在我们的努力下,应用性能会螺旋式上升,最终达到我们的期望。
求职面经
1. 关注“性能优化”的副作用问题
性能优化的面试题,一般都是穿插在其他题目里的。你不仅需要关注“性能优化”本身,还需关注“性能优化”之后的问题,因为等你答出面试官想要的性能优化方案之后,面试官接下来便会追问“这个方案所引起的其他问题”。
比如,当你谈到你使用缓存提高了接口的性能时,面试官会接着问你一些关于缓存同步的问题。我们专栏有大部分篇幅描述了性能引起的这些副反应,这些知识更需要你去用心掌握。
2.掌握好“性能优化”基础知识
另外,从上面的总结我们就可以看出,性能优化涉及的知识点非常多,那如何在有限的面试时间里尽量多地展现自己呢?那便是打好知识基础,能够对问题进行详细准确地作答。
你都对JVM做了那些优化,有哪些性能提升?
为什么互联网场景下通常使用乐观锁?
上述两个问题比较好回答,因为它的答案相对确定,你只需要讲清楚特定的知识点就可以了,而比较麻烦的会是下来这类题目。
3.发散、综合性题目提前准备
如果上面的题是围绕“点”,那么下面的题便是围绕一个“面”。
你在项目中做过哪些性能优化方面的工作?
你是如何指导团队做性能优化的?
如果你仅针对某个知识点进行描述,那么你的答案就显得非常单薄。其实你可以从问题发现、问题解决、问题验证等方面系统性地分别进行描述,并着重谈一下在这一过程中自己认为最重要并最熟悉的知识点。
所以,我推荐你在面试前,根据自己的项目准备一下这两类问题的现实案例(如果没有实践、合情合理的推演也是合适的),这样在碰到这样的问题时,才能够快速应对,让面试官刮目相看。
小结
本课时,我们主要对前面课时的内容进行了统一的梳理和总结,最终将性能优化总结为:找到优化目标 → 使用工具获取更多性能数据 → 性能优化的基本的解决方式 → 代码层面优化→ 过程方法,以及支持这一过程的方法论—PDCA 循环,应用性能就是靠这样一轮轮的优化,逐渐累加它的效果。
最后,又向你简单介绍了“求职面经”,希望能帮助你在职业道路上越走越远。
课程评价入口,挑选 5 名小伙伴赠送小礼品~
-– ### 精选评论 ##### *志: > 老师这课真是收获满满,值得反复琢磨,特别是最后一章,给我们列了一个性能优化大纲,对我们很有帮助,为老师点赞! ##### **建: > 很全面,可以多学几遍巩固一下 ##### **建: > 这个总结不错哦 ##### **波: > 最后的这个总结真是为我们想的太周到了
文章作者 anonymous
上次更新 2024-06-14