你好,我是倪朋飞。

上一节我们详细学习了 Linux 内存回收,特别是 Swap 的原理,先简单回顾一下。

在内存资源紧张时,Linux 通过直接内存回收和定期扫描的方式,来释放文件页和匿名页,以便把内存分配给更需要的进程使用。

  • 文件页的回收比较容易理解,直接清空缓存,或者把脏数据写回磁盘后,再释放缓存就可以了。
  • 而对不常访问的匿名页,则需要通过 Swap 换出到磁盘中,这样在下次访问的时候,再次从磁盘换入到内存中就可以了。

开启 Swap 后,你可以设置 /proc/sys/vm/min_free_kbytes,来调整系统定期回收内存的阈值,也可以设置 /proc/sys/vm/swappiness,来调整文件页和匿名页的回收倾向。

那么,当 Swap 使用升高时,要如何定位和分析呢?下面,我们就来看一个磁盘 I/O 的案例,实战分析和演练。

案例

下面案例基于 Ubuntu 18.04,同样适用于其他的 Linux 系统。

  • 机器配置:2 CPU,8GB 内存
  • 你需要预先安装 sysstat 等工具,如 apt install sysstat

首先,我们打开两个终端,分别 SSH 登录到两台机器上,并安装上面提到的这些工具。

同以前的案例一样,接下来的所有命令都默认以 root 用户运行,如果你是用普通用户身份登陆系统,请运行 sudo su root 命令切换到 root 用户。

如果安装过程中有什么问题,同样鼓励你先自己搜索解决,解决不了的,可以在留言区向我提问。

然后,在终端中运行 free 命令,查看 Swap 的使用情况。比如,在我的机器中,输出如下:

1
2
3
4
5
6
7
8

$ free

             total        used        free      shared  buff/cache   available

Mem:        8169348      331668     6715972         696     1121708     7522896

Swap:             0           0           0

从这个 free 输出你可以看到,Swap 的大小是 0,这说明我的机器没有配置 Swap。

为了继续 Swap 的案例,就需要先配置、开启 Swap。如果你的环境中已经开启了 Swap,那你可以略过下面的开启步骤,继续往后走。

要开启 Swap,我们首先要清楚,Linux 本身支持两种类型的 Swap,即 Swap 分区和 Swap 文件。以 Swap 文件为例,在第一个终端中运行下面的命令开启 Swap,我这里配置 Swap 文件的大小为 8GB:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

# 创建 Swap 文件

$ fallocate -l 8G /mnt/swapfile

# 修改权限只有根用户可以访问

$ chmod 600 /mnt/swapfile

# 配置 Swap 文件

$ mkswap /mnt/swapfile

# 开启 Swap

$ swapon /mnt/swapfile

然后,再执行 free 命令,确认 Swap 配置成功:

1
2
3
4
5
6
7
8

$ free

             total        used        free      shared  buff/cache   available

Mem:        8169348      331668     6715972         696     1121708     7522896

Swap:       8388604           0     8388604

现在,free 输出中,Swap 空间以及剩余空间都从 0 变成了 8GB,说明 Swap 已经正常开启

接下来,我们在第一个终端中,运行下面的 dd 命令,模拟大文件的读取:

1
2
3
4

# 写入空设备,实际上只有磁盘的读请求

$ dd if=/dev/sda1 of=/dev/null bs=1G count=2048

接着,在第二个终端中运行 sar 命令,查看内存各个指标的变化情况。你可以多观察一会儿,查看这些指标的变化情况。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

# 间隔 1 秒输出一组数据

# -r 表示显示内存使用情况,-S 表示显示 Swap 使用情况

$ sar -r -S 1

04:39:56    kbmemfree   kbavail kbmemused  %memused kbbuffers  kbcached  kbcommit   %commit  kbactive   kbinact   kbdirty

04:39:57      6249676   6839824   1919632     23.50    740512     67316   1691736     10.22    815156    841868         4

 04:39:56    kbswpfree kbswpused  %swpused  kbswpcad   %swpcad

04:39:57      8388604         0      0.00         0      0.00

 04:39:57    kbmemfree   kbavail kbmemused  %memused kbbuffers  kbcached  kbcommit   %commit  kbactive   kbinact   kbdirty

04:39:58      6184472   6807064   1984836     24.30    772768     67380   1691736     10.22    847932    874224        20

 04:39:57    kbswpfree kbswpused  %swpused  kbswpcad   %swpcad

04:39:58      8388604         0      0.00         0      0.00

 …

  04:44:06    kbmemfree   kbavail kbmemused  %memused kbbuffers  kbcached  kbcommit   %commit  kbactive   kbinact   kbdirty

04:44:07       152780   6525716   8016528     98.13   6530440     51316   1691736     10.22    867124   6869332         0

 04:44:06    kbswpfree kbswpused  %swpused  kbswpcad   %swpcad

04:44:07      8384508      4096      0.05        52      1.27

我们可以看到,sar 的输出结果是两个表格,第一个表格表示内存的使用情况,第二个表格表示 Swap 的使用情况。其中,各个指标名称前面的 kb 前缀,表示这些指标的单位是 KB。

去掉前缀后,你会发现,大部分指标我们都已经见过了,剩下的几个新出现的指标,我来简单介绍一下。

  • kbcommit,表示当前系统负载需要的内存。它实际上是为了保证系统内存不溢出,对需要内存的估计值。%commit,就是这个值相对总内存的百分比。
  • kbactive,表示活跃内存,也就是最近使用过的内存,一般不会被系统回收。
  • kbinact,表示非活跃内存,也就是不常访问的内存,有可能会被系统回收。

清楚了界面指标的含义后,我们再结合具体数值,来分析相关的现象。你可以清楚地看到,总的内存使用率(%memused)在不断增长,从开始的 23% 一直长到了 98%,并且主要内存都被缓冲区(kbbuffers)占用。具体来说:

  • 刚开始,剩余内存(kbmemfree)不断减少,而缓冲区(kbbuffers)则不断增大,由此可知,剩余内存不断分配给了缓冲区。
  • 一段时间后,剩余内存已经很小,而缓冲区占用了大部分内存。这时候,Swap 的使用开始逐渐增大,缓冲区和剩余内存则只在小范围内波动。

你可能困惑了,为什么缓冲区在不停增大?这又是哪些进程导致的呢?

显然,我们还得看看进程缓存的情况。在前面缓存的案例中我们学过,cachetop 正好能满足这一点。那我们就来 cachetop 一下。

在第二个终端中,按下 Ctrl+C 停止 sar 命令,然后运行下面的 cachetop 命令,观察缓存的使用情况:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

$ cachetop 5

12:28:28 Buffers MB: 6349 / Cached MB: 87 / Sort: HITS / Order: ascending

PID      UID      CMD              HITS     MISSES   DIRTIES  READ_HIT%  WRITE_HIT%

   18280 root     python                 22        0        0     100.0%       0.0%

   18279 root     dd                  41088    41022        0      50.0%      50.0%

通过 cachetop 的输出,我们看到,dd 进程的读写请求只有 50% 的命中率,并且未命中的缓存页数(MISSES)为 41022(单位是页)。这说明,正是案例开始时运行的 dd,导致了缓冲区使用升高。

你可能接着会问,为什么 Swap 也跟着升高了呢?直观来说,缓冲区占了系统绝大部分内存,还属于可回收内存,内存不够用时,不应该先回收缓冲区吗?

这种情况,我们还得进一步通过 /proc/zoneinfo,观察剩余内存、内存阈值以及匿名页和文件页的活跃情况。

你可以在第二个终端中,按下 Ctrl+C,停止 cachetop 命令。然后运行下面的命令,观察 /proc/zoneinfo 中这几个指标的变化情况:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

# -d 表示高亮变化的字段

# -A 表示仅显示 Normal 行以及之后的 15 行输出

$ watch -d grep -A 15 'Normal' /proc/zoneinfo

Node 0, zone   Normal

  pages free     21328

        min      14896

        low      18620

        high     22344

        spanned  1835008

        present  1835008

        managed  1796710

        protection: (0, 0, 0, 0, 0)

      nr_free_pages 21328

      nr_zone_inactive_anon 79776

      nr_zone_active_anon 206854

      nr_zone_inactive_file 918561

      nr_zone_active_file 496695

      nr_zone_unevictable 2251

      nr_zone_write_pending 0

你可以发现,剩余内存(pages_free)在一个小范围内不停地波动。当它小于页低阈值(pages_low) 时,又会突然增大到一个大于页高阈值(pages_high)的值。

再结合刚刚用 sar 看到的剩余内存和缓冲区的变化情况,我们可以推导出,剩余内存和缓冲区的波动变化,正是由于内存回收和缓存再次分配的循环往复。

  • 当剩余内存小于页低阈值时,系统会回收一些缓存和匿名内存,使剩余内存增大。其中,缓存的回收导致 sar 中的缓冲区减小,而匿名内存的回收导致了 Swap 的使用增大。
  • 紧接着,由于 dd 还在继续,剩余内存又会重新分配给缓存,导致剩余内存减少,缓冲区增大。

其实还有一个有趣的现象,如果多次运行 dd 和 sar,你可能会发现,在多次的循环重复中,有时候是 Swap 用得比较多,有时候 Swap 很少,反而缓冲区的波动更大。

换句话说,系统回收内存时,有时候会回收更多的文件页,有时候又回收了更多的匿名页。

显然,系统回收不同类型内存的倾向,似乎不那么明显。你应该想到了上节课提到的 swappiness,正是调整不同类型内存回收的配置选项。

还是在第二个终端中,按下 Ctrl+C 停止 watch 命令,然后运行下面的命令,查看 swappiness 的配置:

1
2
3
4

$ cat /proc/sys/vm/swappiness

60

swappiness 显示的是默认值 60,这是一个相对中和的配置,所以系统会根据实际运行情况,选择合适的回收类型,比如回收不活跃的匿名页,或者不活跃的文件页。

到这里,我们已经找出了 Swap 发生的根源。另一个问题就是,刚才的 Swap 到底影响了哪些应用程序呢?换句话说,Swap 换出的是哪些进程的内存?

这里我还是推荐 proc 文件系统,用来查看进程 Swap 换出的虚拟内存大小,它保存在 /proc/pid/status 中的 VmSwap 中(推荐你执行 man proc 来查询其他字段的含义)。

在第二个终端中运行下面的命令,就可以查看使用 Swap 最多的进程。注意 for、awk、sort 都是最常用的 Linux 命令,如果你还不熟悉,可以用 man 来查询它们的手册,或上网搜索教程来学习。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

# 按 VmSwap 使用量对进程排序,输出进程名称、进程 ID 以及 SWAP 用量

$ for file in /proc/*/status ; do awk '/VmSwap|Name|^Pid/{printf $2 " " $3}END{ print ""}' $file; done | sort -k 3 -n -r | head

dockerd 2226 10728 kB

docker-containe 2251 8516 kB

snapd 936 4020 kB

networkd-dispat 911 836 kB

polkitd 1004 44 kB

从这里你可以看到,使用 Swap 比较多的是 dockerd 和 docker-containe 进程,所以,当 dockerd 再次访问这些换出到磁盘的内存时,也会比较慢。

这也说明了一点,虽然缓存属于可回收内存,但在类似大文件拷贝这类场景下,系统还是会用 Swap 机制来回收匿名内存,而不仅仅是回收占用绝大部分内存的文件页。

最后,如果你在一开始配置了 Swap,不要忘记在案例结束后关闭。你可以运行下面的命令,关闭 Swap:

1
2

$ swapoff -a

实际上,关闭 Swap 后再重新打开,也是一种常用的 Swap 空间清理方法,比如:

1
2

$ swapoff -a && swapon -a 

小结

在内存资源紧张时,Linux 会通过 Swap,把不常访问的匿名页换出到磁盘中,下次访问的时候再从磁盘换入到内存中来。你可以设置 /proc/sys/vm/min_free_kbytes,来调整系统定期回收内存的阈值;也可以设置 /proc/sys/vm/swappiness,来调整文件页和匿名页的回收倾向。

当 Swap 变高时,你可以用 sar、/proc/zoneinfo、/proc/pid/status 等方法,查看系统和进程的内存使用情况,进而找出 Swap 升高的根源和受影响的进程。

反过来说,通常,降低 Swap 的使用,可以提高系统的整体性能。要怎么做呢?这里,我也总结了几种常见的降低方法。

  • 禁止 Swap,现在服务器的内存足够大,所以除非有必要,禁用 Swap 就可以了。随着云计算的普及,大部分云平台中的虚拟机都默认禁止 Swap。
  • 如果实在需要用到 Swap,可以尝试降低 swappiness 的值,减少内存回收时 Swap 的使用倾向。
  • 响应延迟敏感的应用,如果它们可能在开启 Swap 的服务器中运行,你还可以用库函数 mlock() 或者 mlockall() 锁定内存,阻止它们的内存换出。

思考

最后,给你留一个思考题。

今天的案例中,swappiness 使用的是默认配置的 60。如果把它配置成 0 的话,还会发生 Swap 吗?这又是为什么呢?

希望你可以实际操作一下,重点观察 sar 的输出,并结合今天的内容来记录、总结。

欢迎留言和我讨论,也欢迎把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。